Calculating Orbital Angular Momentum: What Is the Correct Answer?

Click For Summary
The discussion centers around a calculation of orbital angular momentum, where the initial integral calculation yielded an incorrect result of (3*i*pi)/16 instead of the expected 1/2i. A key mistake identified was the omission of the sin(θ) term in the integrand, which is crucial for the integration over solid angles. The correct approach involves using algebraic manipulation and the orthonormality property of spherical harmonics to arrive at the correct answer. It is also noted that the probability can be calculated directly from the sum of the squares of the coefficients, which must equal unity. The conversation emphasizes the importance of careful attention to detail in integral calculations.
Martin89
Messages
25
Reaction score
1

Homework Statement


Q6.png


Homework Equations

The Attempt at a Solution


20180411_151430.jpg

Hi All,

My problem is that when I calculate this integral or use software to do it for me I get (3*i*pi)/16, when I've been told that the answer is 1/2i giving a probability of 1/4. Would someone be able to point out where my mistake is.

Thanks
 

Attachments

  • Q6.png
    Q6.png
    27.9 KB · Views: 512
  • Q6.png
    Q6.png
    27.3 KB · Views: 835
  • 20180411_151430.jpg
    20180411_151430.jpg
    14.1 KB · Views: 744
Physics news on Phys.org
You are missing a ##\sin\theta## in the integrand, ##d\Omega =\sin \theta d\theta d\phi##.
 
  • Like
Likes Martin89
kuruman said:
You are missing a ##\sin\theta## in the integrand, ##d\Omega =\sin \theta d\theta d\phi##.
So I have, thanks for the spot!
 
At some point you will learn to do such integrals without actually integrating. You can easily show with a bit of algebra that$$ -\sqrt{\frac{3}{8\pi}}\sin\theta \sin \phi=\frac{1}{2i} \left(Y_{1,1}+Y_{1,-1}\right)~;~~~-\sqrt{\frac{3}{8\pi}}i\cos\theta=-\frac{i}{\sqrt{2}}Y_{1,0}$$so that $$X_{1,1}=\frac{1}{2i} \left(Y_{1,1}+Y_{1,-1}\right)-\frac{i}{\sqrt{2}}Y_{1,0}$$ and then use the orthonormality property of the spherical harmonics, ##\int Y^*_{l,m}Y_{l',m'}d\Omega=\delta_{ll'}\delta_{mm'}## to get the answer. Clearly, only the integral involving ##Y_{1,1}## is non-zero.
 
  • Like
Likes Martin89
kuruman said:
At some point you will learn to do such integrals without actually integrating. You can easily show with a bit of algebra that$$ -\sqrt{\frac{3}{8\pi}}\sin\theta \sin \phi=\frac{1}{2i} \left(Y_{1,1}+Y_{1,-1}\right)~;~~~-\sqrt{\frac{3}{8\pi}}i\cos\theta=-\frac{i}{\sqrt{2}}Y_{1,0}$$so that $$X_{1,1}=\frac{1}{2i} \left(Y_{1,1}+Y_{1,-1}\right)-\frac{i}{\sqrt{2}}Y_{1,0}$$ and then use the orthonormality property of the spherical harmonics, ##\int Y^*_{l,m}Y_{l',m'}d\Omega=\delta_{ll'}\delta_{mm'}## to get the answer. Clearly, only the integral involving ##Y_{1,1}## is non-zero.

Or I can calculate the probability directly from the the sum of the squares of the coefficients as they must equal unity. Thanks again for the help!
 
The book claims the answer is that all the magnitudes are the same because "the gravitational force on the penguin is the same". I'm having trouble understanding this. I thought the buoyant force was equal to the weight of the fluid displaced. Weight depends on mass which depends on density. Therefore, due to the differing densities the buoyant force will be different in each case? Is this incorrect?

Similar threads

Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
13
Views
2K
  • · Replies 54 ·
2
Replies
54
Views
4K
  • · Replies 5 ·
Replies
5
Views
6K
Replies
2
Views
1K
Replies
19
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K