Oscillations of load with spring after rod is suddenly stopped

  • Thread starter Thread starter alalalash_kachok
  • Start date Start date
  • Tags Tags
    Mechanics
Click For Summary

Homework Help Overview

The discussion revolves around the dynamics of a load attached to a spring on a rotating rod, particularly focusing on the behavior of the system after the rod is suddenly stopped. The subject area includes concepts from mechanics, specifically oscillations and energy conservation.

Discussion Character

  • Exploratory, Conceptual clarification, Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • Participants explore the application of Newton's second law to describe the motion of the load after the rod stops rotating. There are attempts to relate the energy of circular motion to the oscillatory motion of the spring. Questions arise regarding the relevance of rotational energy and the definition of initial conditions for the oscillation.

Discussion Status

Participants are actively engaging with the problem, questioning assumptions about energy conservation and the initial conditions for oscillation. Some guidance has been provided regarding the definition of the phase constant in relation to the moment the rod stops. There is an ongoing exploration of how to set up the equations governing the motion.

Contextual Notes

There is a mention of potential confusion regarding the transition from rotational motion to oscillatory motion, as well as the need for clarity on initial conditions and definitions. The discussion reflects a collaborative effort to clarify these aspects without reaching a definitive conclusion.

alalalash_kachok
Messages
4
Reaction score
1
Homework Statement
The rod is rotating with constant angle velocity \omega, load what has weight m may slide on it. The load is held at certain distance by spring with stiffness k and startring length r_0.
Relevant Equations
Find depending r on t if stop the rotating of rod.
I understand that after stopping of rotating I should consider second Newton's law:
m d^2r/dt^2 = k(r-r_0)
And using the law of energy conservation I can propose that energy of circular motion I (\omega)^2/2, where I = mr^2 - moment of intertia will be converted into spring's oscillation. But I not understand what I can do with Newton's law, if there is a constant that disturbs me to consider this motion as oscillations and use the fact that square of oscillation frequency is k/m. Sorry for my bad English, I hope that you can understand this task
 
  • Like
Likes   Reactions: berkeman
Physics news on Phys.org
alalalash_kachok said:
Homework Statement: The rod is rotating with constant angle velocity \omega, load what has weight m may slide on it. The load is held at certain distance by spring with stiffness k and startring length r_0.
Relevant Equations: Find depending r on t if stop the rotating of rod.

I understand that after stopping of rotating I should consider second Newton's law:
m d^2r/dt^2 = k(r-r_0)
And using the law of energy conservation I can propose that energy of circular motion I (\omega)^2/2, where I = mr^2 - moment of intertia will be converted into spring's oscillation. But I not understand what I can do with Newton's law, if there is a constant that disturbs me to consider this motion as oscillations and use the fact that square of oscillation frequency is k/m. Sorry for my bad English, I hope that you can understand this task
I don’t understand how the rotational energy is relevant. If the rotation of the rod stops then that energy is immediately lost.
Perhaps I have not understood your description. Can you post the original wording in whatever language?
 
Sorry for my misleading, I agree with you. But I have remembered about that I can consider Newton's law for moment after stopping rotating: m $$\frac{d^2r}{dt^2} = k(r-r_0)$$. And try solve this equation, taking $$z = c*e^{i\omega t}$$. After that I get r as superposition of a general solution of the homogeneous equation and the partial non-uniform equation $$r = a \cdot \cos{\omega_0 t + \phi} + r_0$$, where \omega_0 = \sqrt{k/m}. Can I suppose that ##\phi## is 0 just after stopping rotating?
 
alalalash_kachok said:
Sorry for my misleading, I agree with you. But I have remembered about that I can consider Newton's law for moment after stopping rotating: m $$\frac{d^2r}{dt^2} = k(r-r_0)$$. And try solve this equation, taking $$z = c*e^{i\omega t}$$. After that I get r as superposition of a general solution of the homogeneous equation and the partial non-uniform equation $$r = a \cdot \cos{\omega_0 t + \phi} + r_0$$, where \omega_0 = \sqrt{k/m}. Can I suppose that ##\phi## is 0 just after stopping rotating?
You mean $$r = a \cdot \cos(\omega_0 t + \phi) + r_0$$. Curly braces, {}, have special meaning in LaTeX.
The value of ##\phi## depends on how you define t=0. If that is the instant the rod stops rotating then you need a value of ##\phi## for which ##t=0 ## gives ##r=r_0##.
 
haruspex said:
You mean $$r = a \cdot \cos(\omega_0 t + \phi) + r_0$$. Curly braces, {}, have special meaning in LaTeX.
The value of ##\phi## depends on how you define t=0. If that is the instant the rod stops rotating then you need a value of ##\phi## for which ##t=0 ## gives ##r=r_0##.
Okay, assume that t=0 is moment when the rotating rod is stopped. After that the load starts spring fluctuations, don't you think? Can I consider Newton's law: $$m (\omega)^2 r_1= k(r_1-r_0)$$ for the moment just before stopping and take from this starting value of r(t)? Then put it in equation r(t) as solution of the partial non-uniform equation
 
Last edited:
alalalash_kachok said:
Okay, assume that t=0 is moment when the rotating rod is stopped. After that the load starts spring fluctuations, don't you think? Can I consider Newton's law: $$m (\omega)^2 r_1= k(r_1-r_0)$$ for the moment just before stopping and take from this starting value of r(t)? Then put it in equation r(t) as solution of the partial non-uniform equation
Sounds right. Please post what you get.
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
1K
Replies
9
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
5
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
3
Views
876
Replies
19
Views
2K