Painter on a crate - Acceleration

  • Thread starter Thread starter Shreya
  • Start date Start date
  • Tags Tags
    Acceleration
Click For Summary
SUMMARY

The discussion focuses on solving a physics problem involving the acceleration of a painter on a crate, specifically addressing the forces and moments acting on an accelerating car. The correct acceleration is established as 2 m/s², derived from the force equations for both the crate and the painter. Participants emphasize the importance of using Free Body Diagrams (FBDs) and correctly accounting for forces, including the weight of the lift in the calculations. The final equations provided are crucial for understanding the dynamics involved in the scenario.

PREREQUISITES
  • Understanding of Free Body Diagrams (FBDs)
  • Knowledge of Newton's laws of motion
  • Familiarity with force and torque balance equations
  • Basic proficiency in using LaTeX for mathematical expressions
NEXT STEPS
  • Study the application of Newton's second law in dynamic systems
  • Learn how to construct and analyze Free Body Diagrams (FBDs)
  • Explore torque calculations in mechanical systems
  • Practice using LaTeX for formatting physics equations
USEFUL FOR

Students and educators in physics, mechanical engineers, and anyone interested in understanding the dynamics of forces in accelerating systems.

Shreya
Messages
187
Reaction score
64
Homework Statement
Please Refer the Image below
Relevant Equations
F=ma
Here's my attempt to solve part b. I am not sure how to approach part a.
Please be kind to help me.
The answer of part be must be 2m/s² but I get a different answer.
 

Attachments

  • SmartSelect_20220416-091325_Drive.jpg
    SmartSelect_20220416-091325_Drive.jpg
    49.7 KB · Views: 101
  • 20220416_091351.jpg
    20220416_091351.jpg
    32.8 KB · Views: 96
  • SmartSelect_20220416-092312_Drive.jpg
    SmartSelect_20220416-092312_Drive.jpg
    9.7 KB · Views: 107
Last edited:
Physics news on Phys.org
Have you tried a FBD and summation of forces and moments for part a?
 
  • Like
Likes   Reactions: Shreya
Lnewqban said:
Have you tried a FBD and summation of forces and moments for part a?
I am not sure how to start on that. Could you please give me an example?
 
Shreya said:
I am not sure how to start on that. Could you please give me an example?
Draw a side view of the car showing a front wheel and a rear wheel.
Show the vertical and horizontal forces the ground exerts on the wheels, assigning variable names to them, bearing mind that the car is accelerating.
What force and torque balance equations can you write?
 
  • Like
Likes   Reactions: Lnewqban and Shreya
Shreya said:
I am not sure how to start on that. Could you please give me an example?
Your FBD is not right. You are forgetting forces and the signs don't look right. And there are no units. If you plug the numbers in you must also use the correct units.

I suggest you take up to be positive and write down the force equations for the man and the lift. Try to get those correct first.

Use Latex if you can:
$$Ma = \dots$$$$ma = \dots$$
 
  • Like
Likes   Reactions: Shreya
PeroK said:
Your FBD is not right. You are forgetting forces and the signs don't look right. And there are no units. If you plug the numbers in you must also use the correct units.

I suggest you take up to be positive and write down the force equations for the man and the lift. Try to get those correct first.

Use Latex if you can:
$$Ma = \dots$$$$ma = \dots$$
Post #3 was in respect of part a, the question about an accelerating car.
The attempt attached in post #1 was for part b. The OP seems to have taken the acceleration as positive down. All your points are valid but the answer obtained looks ok.
 
  • Like
Likes   Reactions: Shreya
haruspex said:
Post #3 was in respect of part a, the question about an accelerating car.
The attempt attached in post #1 was for part b. The OP seems to have taken the acceleration as positive down. All your points are valid but the answer obtained looks ok.
The force equation for the lift omits the weight of the lift itself. The answer should be ##0.2g##, which is what I get and is the answer quoted by the OP.
 
  • Like
Likes   Reactions: Shreya
PeroK said:
The force equation for the lift omits the weight of the lift itself. The answer should be ##0.2g##, which is what I get and is the answer quoted by the OP.
Ahem... yes, I missed that.
 
  • Like
Likes   Reactions: Shreya
PeroK said:
force equation for the lift omits the weight of the lift itself
I am so sorry, I have included it in the new solution.
Thanks a lot for your help! ☺

For the Crate:
$$T - 450N - 250N = 25a$$
For the Painter:
$$T+450N - 1000N = 100a$$
On solving I get, ##a =2m/s²##
##T = 75kgf##
I tried latex for the first time! It works!
 
  • Like
Likes   Reactions: Lnewqban and PeroK
  • #10
haruspex said:
Draw a side view of the car showing a front wheel and a rear wheel
I tried it. Here's what I found. Correct me if I am wrong.
The force due to the ground on the wheels cause the acceleration.
They also cause a torque on the car making it rise up, like '/'
Initially the reaction forces due to the 4 wheels balanced the force of gravity. Now the back wheels have to bear the entire load.
The torque due to the reaction force - brings the car back down
 
  • #11
Shreya said:
I tried it. Here's what I found. Correct me if I am wrong.
The force due to the ground on the wheels cause the acceleration.
They also cause a torque on the car making it rise up, like '/'
Initially the reaction forces due to the 4 wheels balanced the force of gravity. Now the back wheels have to bear the entire load.
The torque due to the reaction force - brings the car back down
Yes, the difference in the normal forces creates a torque, balancing the torque from the frictional forces.
 
  • Informative
Likes   Reactions: Shreya
  • #12
  • Like
Likes   Reactions: PeroK

Similar threads

  • · Replies 38 ·
2
Replies
38
Views
5K
Replies
3
Views
555
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 47 ·
2
Replies
47
Views
5K
Replies
1
Views
2K
Replies
55
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
6
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 23 ·
Replies
23
Views
3K