- 4,650
- 36
Why does a parabola close at infinity?
A science teacher made this statement and I didn't quite get it.
Thanks!
A science teacher made this statement and I didn't quite get it.
Thanks!
The discussion centers on the concept of parabolas and their behavior at infinity, particularly how they can be viewed as limiting cases of ellipses. Participants clarify that parabolas do not close in the traditional sense but rather "meet" at a conceptual point at infinity, as described in various geometric models. The spherical model and polar coordinates are highlighted as frameworks for understanding this behavior. The conversation also touches on the relationship between parabolas, ellipses, and hyperbolas, emphasizing the transition between these conic sections.
PREREQUISITESMathematicians, geometry enthusiasts, educators, and students seeking to deepen their understanding of conic sections and the concept of infinity in geometry.
HallsofIvy said:What your teacher was thinking about is probably this:
Start with an ellipse with one focus at (0,0), the other on the y-axis (at (0,y), say). Imagine "stretching" the ellipse so that, while the first focus remains at (0,0), the second focus moves along the y-axis with y getting larger and larger. You will find that the eccentricity of the ellipse increases- getting closer and closer to 1.
matt grime said:you must have heard of people saying parallel lines meet at infinity? it's the same thing.