Undergrad Parallel Transport of a Tensor: Understand Equation

Click For Summary
The discussion focuses on the equation for parallel transport of a tensor in a manifold, specifically the complexities of reading and understanding the notation involved. The equation presented includes partial derivatives and Christoffel symbols, indicating how tensor components are affected during parallel transport. A specific example is given for a tensor of order three, illustrating how the covariant derivative incorporates correction terms for each tensor index. The conversation highlights the challenge of deciphering convoluted mathematical expressions, but clarity is achieved through detailed explanation. Understanding these equations is crucial for grasping the concept of parallel transport in differential geometry.
AndersF
Messages
27
Reaction score
4
TL;DR
Understanding the equation for a tensor to be parallel-transported
According to my book, the equation that should meet a vector ##\mathbf{v}=v^i\mathbf{e}_i## in order to be parallel-transported in a manifold is:

##v_{, j}^{i}+v^{k} \Gamma_{k j}^{i}=0##

Where ##v_{, j}^i## stands for ##\partial{v^i}{\partial y^j}##, that is, the partial derivative of the component ##v^i## of ##\mathbf{v}## with respect to the general coordinate ##y^j##. I see that there is a sum in ##k## form 1 to ##n##, and that this equation must be meet for all ##i,j=1,2,...,n##, being ##n## the dimenssion of the manifold.

However, I find it difficult to understand how to read this formula describing the condition for parallel transport of a tensor:

##T_{j_{1} j_{2} \ldots j_{r}, k}^{i_{1} i_{2} \ldots i_{s}}+\sum_{m=1}^{s} T_{j_{1} j_{2} \ldots j_{r}}^{i_{1} i_{2} \ldots p_{m} \ldots i_{s}} \Gamma_{p_{m} k}^{i_{m}}-\sum_{n=1}^{r} T_{j_{1} j_{2} \ldots q_{n} \ldots j_{r}}^{i_{1} i_{2} \ldots i_{s}} \Gamma_{j_{n} k}^{q_{n}}=0##

(My theory is that whoever wrote that formula probably did so to engage in a competition of convoluted mathematical notations... :confused: )

Could somebody please help me understand it how should be read? For example, how would it apply for a tensor of order three ##T^{a,b}_{\alpha,\beta}##?
 
Physics news on Phys.org
It's not the easiest notation to read is it, haha. A tensor ##T^{\mu \dots}_{\nu \dots}## is parallel transported along a curve of tangent ##u^{\mu} = dx^{\mu}/d\lambda## if \begin{align*}
\dfrac{DT^{\mu \dots}_{\nu \dots}}{d\lambda} = u^{\rho} \nabla_{\rho} T^{\mu \dots}_{\nu \dots} = u^{\rho} (\partial_{\rho} T^{\mu \dots}_{\nu \dots} + \Gamma^{\mu}_{\sigma \rho} T^{\sigma}_{\nu} - \Gamma^{\sigma}_{\nu \rho} T^{\mu \dots}_{\sigma \dots} + \dots) = 0
\end{align*}There's one correction term per tensor index in the covariant derivative. Notice the patern: each index is pulled onto the Christoffel symbol and then replaced with a dummy index. Terms correcting for upper indices appear with a ##+## sign, and terms correcting for lower indices appear with a ##-## sign.
 
Last edited:
  • Like
Likes vanhees71, AndersF and PeroK
Oh ok, it is by far much clearer the way you wrote it. Now I see it, thanks!
 
A good one to everyone. My previous post on this subject here on the forum was a fiasco. I’d like to apologize to everyone who did their best to comment and got ignored by me. In defence, I could tell you I had really little time to spend on discussion, and just overlooked the explanations that seemed irrelevant (why they seemed irrelevant, I will tell you at the end of this). Before we get to the point, I will kindly ask you to comment having considered this text carefully, because...

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 14 ·
Replies
14
Views
4K
  • · Replies 71 ·
3
Replies
71
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 38 ·
2
Replies
38
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K