I Parallel Transport of a Tensor: Understand Equation

AndersF
Messages
27
Reaction score
4
TL;DR Summary
Understanding the equation for a tensor to be parallel-transported
According to my book, the equation that should meet a vector ##\mathbf{v}=v^i\mathbf{e}_i## in order to be parallel-transported in a manifold is:

##v_{, j}^{i}+v^{k} \Gamma_{k j}^{i}=0##

Where ##v_{, j}^i## stands for ##\partial{v^i}{\partial y^j}##, that is, the partial derivative of the component ##v^i## of ##\mathbf{v}## with respect to the general coordinate ##y^j##. I see that there is a sum in ##k## form 1 to ##n##, and that this equation must be meet for all ##i,j=1,2,...,n##, being ##n## the dimenssion of the manifold.

However, I find it difficult to understand how to read this formula describing the condition for parallel transport of a tensor:

##T_{j_{1} j_{2} \ldots j_{r}, k}^{i_{1} i_{2} \ldots i_{s}}+\sum_{m=1}^{s} T_{j_{1} j_{2} \ldots j_{r}}^{i_{1} i_{2} \ldots p_{m} \ldots i_{s}} \Gamma_{p_{m} k}^{i_{m}}-\sum_{n=1}^{r} T_{j_{1} j_{2} \ldots q_{n} \ldots j_{r}}^{i_{1} i_{2} \ldots i_{s}} \Gamma_{j_{n} k}^{q_{n}}=0##

(My theory is that whoever wrote that formula probably did so to engage in a competition of convoluted mathematical notations... :confused: )

Could somebody please help me understand it how should be read? For example, how would it apply for a tensor of order three ##T^{a,b}_{\alpha,\beta}##?
 
Physics news on Phys.org
It's not the easiest notation to read is it, haha. A tensor ##T^{\mu \dots}_{\nu \dots}## is parallel transported along a curve of tangent ##u^{\mu} = dx^{\mu}/d\lambda## if \begin{align*}
\dfrac{DT^{\mu \dots}_{\nu \dots}}{d\lambda} = u^{\rho} \nabla_{\rho} T^{\mu \dots}_{\nu \dots} = u^{\rho} (\partial_{\rho} T^{\mu \dots}_{\nu \dots} + \Gamma^{\mu}_{\sigma \rho} T^{\sigma}_{\nu} - \Gamma^{\sigma}_{\nu \rho} T^{\mu \dots}_{\sigma \dots} + \dots) = 0
\end{align*}There's one correction term per tensor index in the covariant derivative. Notice the patern: each index is pulled onto the Christoffel symbol and then replaced with a dummy index. Terms correcting for upper indices appear with a ##+## sign, and terms correcting for lower indices appear with a ##-## sign.
 
Last edited:
  • Like
Likes vanhees71, AndersF and PeroK
Oh ok, it is by far much clearer the way you wrote it. Now I see it, thanks!
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top