So this is an ultra basic question, but I'm rusty with parametrization techniques and wanted to make sure I was doing this correctly. Let's say I want to evaluate [tex]\int_{\gamma} z \: dz[/tex] where [tex]\gamma : [a,b]\rightarrow \mathbb{C}[/tex] is some path of integration. Now, I figure I can parametrize the curve and apply the definition of complex integration to arrive at the following: [tex]\gamma(t) = x(t) + iy(t) \quad \text{so} \quad \int_{\gamma} z \: dz = \int_a^b \gamma(t) \gamma(t)' \: dt = \int_a^b (x(t)+iy(t))(x'(t)+iy'(t)) \: dt[/tex] and distribute from there. Again, I know this is a very basic question, and I'm pretty sure it's correct, but it's been a while so I wanted to make sure I wasn't making some silly logical error (quite possible). Thanks.(adsbygoogle = window.adsbygoogle || []).push({});

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Parametrizing Complex Line Integral

**Physics Forums | Science Articles, Homework Help, Discussion**