Parity and integration in spherical coordinates

Click For Summary
The discussion centers on the use of parity in evaluating integrals in spherical coordinates. The integral presented involves spherical harmonics and trigonometric functions, leading to the conclusion that the integrated function has odd parity. It is confirmed that if a function exhibits odd parity, the integral over symmetric limits can be asserted to be zero without direct calculation. However, it is noted that not all functions possess definite parity, which is an important consideration when applying this method. The conversation emphasizes the validity of using parity to simplify integral evaluations in specific cases.
KostasV
Messages
21
Reaction score
0
Hello people!
I have ended up to this integral ##\int_{φ=0}^{2π} \int_{θ=0}^π \sin θ \ \cos θ~Y_{00}^*~Y_{00}~dθ \, dφ## while I was solving a problem.
I know that in spherical coordinates when ##\vec r → -\vec r## :
1) The magnitude of ##\vec r## does not change : ##r' → r##
2) The angles ##θ## and ##φ## change like ##θ' → π-θ## and ##φ' → π+φ##
3) So parity of spherical harmonics is ##\hat P## ##Y_{lm}(θ,φ)## ##=## ##Y_{lm}(θ',φ')=(-1)^l## ##Y_{lm}(θ,φ)##
4) Parity of ##\cos θ## and ##\sin θ## are ##\cos θ'## ##=## ##(-1)## ##\cos θ## and ##\sin θ'## ##=## ##\sin θ## respectively.
This means that in my case the integrated function has Parity equal to ##(-1)## .

So my question is:
Can I say that this integral is zero because of the odd (=parity is equal to (-1)) integrated funtion? Because in the xy plane when we integrate an odd function ##F(x)=-F(-x)## in a symmetric space (e.g. ##\int_{-a}^a F(x) \, dx## with F being odd) we can say that it is zero without to calculate it.
If yes, can I do this in general? meaning, if i get a random function in spherical coordinates which depends only from angles θ and φ and i want to integrate it with these limits: ##\int_{φ=0}^{2π} \int_{θ=0}^π randomF(θ,φ) \, dθ \, dφ## , can i find its parity and say if it is zero or not?
 
Physics news on Phys.org
Well, ##\mathrm{Y}_{00}=1/\sqrt{4 \pi}=\text{const}## and your integral thus is
$$\propto \int_0^{\pi} \mathrm{d} \vartheta \sin \vartheta \cos \vartheta=\int_0^{\pi} \mathrm{d} \vartheta \frac{1}{2} \sin(2 \vartheta)= \left .-\frac{1}{4} \cos(2 \vartheta)\right|_0^{\pi}=0.$$
 
vanhees71 said:
Well, ##\mathrm{Y}_{00}=1/\sqrt{4 \pi}=\text{const}## and your integral thus is
$$\propto \int_0^{\pi} \mathrm{d} \vartheta \sin \vartheta \cos \vartheta=\int_0^{\pi} \mathrm{d} \vartheta \frac{1}{2} \sin(2 \vartheta)= \left .-\frac{1}{4} \cos(2 \vartheta)\right|_0^{\pi}=0.$$
Ok that was an easy integral but what if i have something more complicated like ##\int_{φ=0}^{2π} \int_{θ=0}^π \sin θ \ \cos θ~Y_{11}^*~Y_{1-1}~dθ \, dφ## ? If we use parity here we see that the parity of the integrated function is (-1) and the integral must be zero! No calculations ! Just used parity !
My question is not how to solve the integral making calculations . I want to solve it using parity and i want to tell me if my thoughts are correct on how to use parity in order to solve these integrals!
Thanks btw for your response :)
 
KostasV said:
Can I say that this integral is zero because of the odd (=parity is equal to (-1)) integrated funtion?
Yes you can. Just remember that not every function has definite parity.
 
blue_leaf77 said:
Yes you can. Just remember that not every function has definite parity.
Thank you very much ! :)
 
Time reversal invariant Hamiltonians must satisfy ##[H,\Theta]=0## where ##\Theta## is time reversal operator. However, in some texts (for example see Many-body Quantum Theory in Condensed Matter Physics an introduction, HENRIK BRUUS and KARSTEN FLENSBERG, Corrected version: 14 January 2016, section 7.1.4) the time reversal invariant condition is introduced as ##H=H^*##. How these two conditions are identical?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 27 ·
Replies
27
Views
5K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K