I Partial differentiation and explicit functions

Click For Summary
The discussion centers on the function f(x, t) = 6x + g(t), where g(t) is an arbitrary function. It is established that f(x, t) is not an explicit function of t due to the presence of the x term, but it is explicit in x and t. The partial derivative ∂f/∂t is not zero, as f still depends on t unless g(t) is a constant. The conversation also touches on Lagrangian mechanics, where confusion arises regarding the Lagrangian's dependence on time despite containing time derivatives. The conclusion emphasizes that the relationship between explicit functions and derivatives can vary based on the specific functions involved.
dyn
Messages
774
Reaction score
63
Hi
For a function f ( x , t ) = 6x + g( t ) where g( t ) is an arbitrary function of t ; then is it correct to say that f ( x , t ) is not an explicit function of t ?

For the above function is it also correct that ∂f/∂t = 0 because f is not an explicit function of t ?

Thanks
 
Physics news on Phys.org
dyn said:
Hi
For a function f ( x , t ) = 6x + g( t ) where g( t ) is an arbitrary function of t ; then is it correct to say that f ( x , t ) is not an explicit function of t ?
I guess, yes, as long as the ##x## term is there. But this is more a matter of taste, I think than it is a rigor definition. But ##f(x,t)## is an explicit function of ##x## and ##t##.

If we had ##f(x)=g(t,x(t))## then ##f(x)## would not be an explicit function of ##t##.

dyn said:
For the above function is it also correct that ∂f/∂t = 0 because f is not an explicit function of t ?

Thanks

No. ##f## still depends on ##t##, except for the case ##g(t)=C## is a constant.
What do you get for ##\dfrac{\partial f}{\partial t}## if ##f(x,t)=6x+\sin(t)## ?
 
Thanks. But what about the case where g ( t ) is an unknown arbitrary function ? What would ∂f/∂t be then ?
 
dyn said:
Thanks. But what about the case where g ( t ) is an unknown arbitrary function ? What would ∂f/∂t be then ?
Apply the chain rule. ##\partial_t f(x,t)=\partial_t(6x)+\partial_t g(t)=0+\partial_t g(t)=g'(t)##
 
My question originally comes a question i am looking at regarding Lagrangian mechanics in cylindrical coordinates. The Lagrangian contains a term containing the time derivative of ρ but the book states that the Lagrangian is not an explicit function of time so ∂L/∂t = 0 and so the Hamiltonian is conserved..

I am confused about how ∂L/∂t = 0 when there is a time derivative in the Lagrangian and also L is said to be not an explicit function of time
 
dyn said:
My question originally comes a question i am looking at regarding Lagrangian mechanics in cylindrical coordinates. The Lagrangian contains a term containing the time derivative of ρ but the book states that the Lagrangian is not an explicit function of time so ∂L/∂t = 0 and so the Hamiltonian is conserved..

I am confused about how ∂L/∂t = 0 when there is a time derivative in the Lagrangian and also L is said to be not an explicit function of time
I haven't said it is impossible. It depends on the functions involved. You gave a very simple example with separated variables. Physical systems are normally a lot more complicated.
 

Similar threads