Partial Differentiation of this Equation in x and y

Click For Summary
The discussion focuses on understanding partial differentiation of a given equation with respect to variables x and y. Participants emphasize the importance of using correct notation, specifically distinguishing between partial derivatives and standard derivatives. The chain rule is recommended for finding the derivative of cos^2(theta), suggesting it be treated as (cos(theta))^2. Clarification is sought on achieving two final functions, with one participant asserting that the derivatives should not yield the same results. The conversation stresses the necessity of showing work rather than posting images for better understanding.
Martyn Arthur
Messages
119
Reaction score
22
Homework Statement
Trying to get to fxx
Relevant Equations
Please see screen print
Hi;
please see below I am trying to understand how to get to the 2 final functions. They should be the same but 6 for the first one and 2 for the second?
(I hope my writing is more clear than previously)
There is an additional question below.
thanks
martyn
1707919506461.png

I can't find a standard derivative for cos^2 theta?
 
Physics news on Phys.org
Martyn Arthur said:
I can't find a standard derivative for cos^2 theta?

Use the chain rule.
 
Please show your work and don’t simply post images of your result. Type out your work.
 
Your two first partials are correct, but your notation isn't.
These aren't f(x) and f(y) as you wrote. They are ##f_x(x, y)## and ##f_y(x,y)## respectively. They can also be written more compactly as ##f_x## and ##f_y##.
Martyn Arthur said:
I can't find a standard derivative for cos^2 theta?
It might be helpful to think of this as ##(\cos(\theta))^2## and then use the chain rule, as @pasmith recommended.

Orodruin said:
Please show your work and don’t simply post images of your result. Type out your work.
I agree. In the lower left corner, click on the link that says "LaTeX Guide." A few minutes spent reading that will be very helpful.
 
Martyn Arthur said:
Homework Statement: Trying to get to fxx
Relevant Equations: Please see screen print

Hi;
please see below I am trying to understand how to get to the 2 final functions. They should be the same but 6 for the first one and 2 for the second?
No. Why are you saying that?

If you can solve that ##f_x(x,y) = 6x-2y-10## then I'm sure that you can calculate ##f_{x,y}(x,y)##. It's simply the derivative of ##6x-2y-10## with respect to ##y##.
Do something similar for ##f_{y,x}##.
 
First, I tried to show that ##f_n## converges uniformly on ##[0,2\pi]##, which is true since ##f_n \rightarrow 0## for ##n \rightarrow \infty## and ##\sigma_n=\mathrm{sup}\left| \frac{\sin\left(\frac{n^2}{n+\frac 15}x\right)}{n^{x^2-3x+3}} \right| \leq \frac{1}{|n^{x^2-3x+3}|} \leq \frac{1}{n^{\frac 34}}\rightarrow 0##. I can't use neither Leibnitz's test nor Abel's test. For Dirichlet's test I would need to show, that ##\sin\left(\frac{n^2}{n+\frac 15}x \right)## has partialy bounded sums...