Particle falling radially into a black hole

Cythermax
Messages
2
Reaction score
0
New poster has been reminded to show their work on schoolwork problems
Homework Statement
Attached it below
Relevant Equations
Not sure which equations necessary here.
I've been stuck starting anywhere with this. I need to finish this class for graduation and i'd like a safety net of a passing grade with this.
 

Attachments

  • 1121.PNG
    1121.PNG
    9.3 KB · Views: 170
Physics news on Phys.org
Well, do you know what the Schwarzschild metric is? In Schwarzschild (spherical) coordinates, if a particle starts at the point ##r, \theta, \phi## at time ##t## and travels a small distance to the point ##r+\delta r, \theta + \delta \theta, \phi + \delta \phi## by time ##t+\delta t##, then the the change in proper time ##\delta \tau## satisfies:

##(\delta \tau)^2 = (1 - 2GM/(c^2 r))^{-1} (\delta t)^2 - (1 - 2GM/(c^2 r)) (\delta r)^2 - r^2 \delta \theta^2 - r^2 sin^2(\theta) (\delta \phi)^2##

You have to start with that as a "relevant equation".
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...

Similar threads

Replies
40
Views
3K
Replies
9
Views
2K
Replies
31
Views
2K
Replies
22
Views
3K
Replies
43
Views
3K
Replies
8
Views
1K
Back
Top