PDE with non-constant coefficient

  • Thread starter FrankST
  • Start date
  • #1
24
0
Dear All,

I have a PDE like:

A * d2w/dy2 + B * 1/x * d2w/dx2 + C * w = 0

where , w = w(x,y), A & B & C are constants.

Is there any analytical solution for this PDE?

If not, is finite difference is the right numerical tools to solve it?

Thanks,

Frank
 

Answers and Replies

  • #2
70
0
Your PDE

[tex]A\frac{\partial^2 w(x,y)}{\partial y^2}+\frac{B}{x}\frac{\partial^2 w(x,y)}{\partial y^2}+Cw(x,y) = 0[/tex]

can be solved by the Laplace transform. The general solution is as follows

[tex]w(x,y)=\int_{-\infty}^{-\infty} F_1 (\omega) AiryAi [-((A\omega^2+C)/B)^{1/3}x]+F_2 (\omega) AiryBi [-((A\omega^2+C)/B)^{1/3}x]\exp(y\omega)d\omega ,[/tex]

where [tex]F_1 (\omega) , F_2 (\omega) [/tex] are arbitrary functions.
 
  • #3
70
0
I'm sorry for misprint. The right answer is

[tex]w(x,y)=\int_{-\infty}^{-\infty} \{F_1 (\omega) AiryAi [-((A\omega^2+C)/B)^{1/3}x]+F_2 (\omega) AiryBi [-((A\omega^2+C)/B)^{1/3}x]\}\exp(y\omega)d\omega ,[/tex]
 

Related Threads on PDE with non-constant coefficient

Replies
2
Views
3K
Replies
4
Views
4K
Replies
5
Views
2K
  • Last Post
Replies
3
Views
6K
Replies
0
Views
1K
  • Last Post
Replies
2
Views
774
  • Last Post
Replies
2
Views
1K
Replies
1
Views
2K
Top