This is beginning to make some sense to me but there are some loose ends. For such a photon to be absorbed (detected) it would need to deliver all its energy into the detecting system. It would need to match the 'transmitter' characteristics and have some sort of 'spectrum' in its own right. What could its energy be? Would it be a version of hf; a kind of
h∫(F(f)df expression, giving a 'massively energetic' photon?
In your description, are you really saying that this sort of photon is in the minority (I guess you are)? These photons would not be like your regular photons which are totally anonymous - able produced by one process, possibly frequency shifted on their journey and then absorbed by a totally different process - as with light produced thermally in a star and then absorbed in a particular gas atom transition. What sort of fractional bandwidth are we talking about?
Is this any different from the familiar photoelectric emission, in which a range of photo-electron energies will result from a broad range of incident frequencies?