DivergentMind
- 4
- 0
I am trying to show that (for 4x4 matrices) the representation given by equation 3.18 (Peskin and Schroeder, page 39):
<br /> (J^{\mu\nu})_{\alpha\beta}<br /> =i(\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta}-\delta^{\mu}_{\beta}\delta^{\nu}_{\alpha})<br />
implies the commutation relations in 3.17:
<br /> [J^{\mu\nu},J^{\rho\sigma}]<br /> =i(g^{\nu\rho}J^{\mu\sigma}-g^{\mu\rho}J^{\nu\sigma}-g^{\nu\sigma}J^{\mu\rho}+g^{\mu\sigma}J^{\nu\rho})<br />
For some reason I cannot even get this to work for the (\mu,\nu,\rho,\sigma)=(0,1,1,2) component:
<br /> [J^{01},J^{12}]_{\alpha\beta}<br /> =J^{01}_{\alpha\gamma}J^{12}_{\gamma\beta}<br /> -J^{12}_{\alpha\gamma}J^{01}_{\gamma\beta}<br /> =i(\delta^0_{\alpha}\delta^1_{\gamma}-\delta^0_{\gamma}\delta^1_{\alpha})<br /> i(\delta^1_{\gamma}\delta^2_{\beta}-\delta^1_{\beta}\delta^2_{\gamma})<br /> -i(\delta^1_{\alpha}\delta^2_{\gamma}-\delta^1_{\gamma}\delta^2_{\alpha})<br /> i(\delta^0_{\gamma}\delta^1_{\beta}-\delta^0_{\beta}\delta^1_{\gamma})<br />
Now, sums like \delta^1_{\gamma}\delta^2_{\gamma} vanish, whereas \delta^1_{\gamma}\delta^1_{\gamma} is 1, so we get:
<br /> [J^{01},J^{12}]_{\alpha\beta}=<br /> -\delta^0_{\alpha}\delta^2_{\beta}<br /> +\delta^0_{\beta}\delta^2_{\alpha}<br /> =i(J^{02})_{\alpha\beta}<br />
On the other hand, the right hand side of 3.17 was supposed to give us:
<br /> i(g^{11}J^{02}-g^{01}J^{12}-g^{12}J^{01}+g^{02}J^{11})_{\alpha\beta}<br /> =i((-1)J^{02}-0-0+0)_{\alpha\beta}=-i(J^{02})_{\alpha\beta}<br />
ugh...
I suspect I messed up with the metric at some point, but I don't see where.
<br /> (J^{\mu\nu})_{\alpha\beta}<br /> =i(\delta^{\mu}_{\alpha}\delta^{\nu}_{\beta}-\delta^{\mu}_{\beta}\delta^{\nu}_{\alpha})<br />
implies the commutation relations in 3.17:
<br /> [J^{\mu\nu},J^{\rho\sigma}]<br /> =i(g^{\nu\rho}J^{\mu\sigma}-g^{\mu\rho}J^{\nu\sigma}-g^{\nu\sigma}J^{\mu\rho}+g^{\mu\sigma}J^{\nu\rho})<br />
For some reason I cannot even get this to work for the (\mu,\nu,\rho,\sigma)=(0,1,1,2) component:
<br /> [J^{01},J^{12}]_{\alpha\beta}<br /> =J^{01}_{\alpha\gamma}J^{12}_{\gamma\beta}<br /> -J^{12}_{\alpha\gamma}J^{01}_{\gamma\beta}<br /> =i(\delta^0_{\alpha}\delta^1_{\gamma}-\delta^0_{\gamma}\delta^1_{\alpha})<br /> i(\delta^1_{\gamma}\delta^2_{\beta}-\delta^1_{\beta}\delta^2_{\gamma})<br /> -i(\delta^1_{\alpha}\delta^2_{\gamma}-\delta^1_{\gamma}\delta^2_{\alpha})<br /> i(\delta^0_{\gamma}\delta^1_{\beta}-\delta^0_{\beta}\delta^1_{\gamma})<br />
Now, sums like \delta^1_{\gamma}\delta^2_{\gamma} vanish, whereas \delta^1_{\gamma}\delta^1_{\gamma} is 1, so we get:
<br /> [J^{01},J^{12}]_{\alpha\beta}=<br /> -\delta^0_{\alpha}\delta^2_{\beta}<br /> +\delta^0_{\beta}\delta^2_{\alpha}<br /> =i(J^{02})_{\alpha\beta}<br />
On the other hand, the right hand side of 3.17 was supposed to give us:
<br /> i(g^{11}J^{02}-g^{01}J^{12}-g^{12}J^{01}+g^{02}J^{11})_{\alpha\beta}<br /> =i((-1)J^{02}-0-0+0)_{\alpha\beta}=-i(J^{02})_{\alpha\beta}<br />
ugh...
I suspect I messed up with the metric at some point, but I don't see where.
Last edited: