Phase velocity in oblique Angle propagation (Plane wave)

AI Thread Summary
The discussion focuses on the phase velocity in oblique angle propagation of plane waves, specifically questioning the significance of x-direction phase velocity compared to z-direction phase velocity. It is clarified that while both velocities are important, the textbook may not emphasize x-velocity due to its similarity in derivation to z-velocity. The resultant phase velocity is shown to differ from the speed of light due to the geometric relationship between the velocities in different directions. The discussion also highlights that the phase velocities should not be confused with the components of a single point's velocity, as they represent different concepts in wave propagation. Overall, the conversation deepens the understanding of phase velocity in the context of electromagnetic waves.
baby_1
Messages
159
Reaction score
16
Homework Statement
Maxwell equation
Relevant Equations
V=xt
Hello,
Regarding the wave oblique angle propagation and based on Balanis "Advanced engineering Electromagnetic" book on page 136 ( it has been attached) I need to know why the phase velocity in x direction is not important to keep in step with a constant phase plane( Just equation 4-23).
question.JPG
I derived the electric filed:
\vec{E}=E_{x}(z)e^{-j\beta (xSin(\theta )+zCos(\theta ))}
For calculating the phase velocity we need to obtain the time-domain form:
\vec{E(t)}=Re\{E_{x}(z)e^{-j\beta (xSin(\theta )+zCos(\theta ))}e^{jwt}\}=E_{x}(z)Cos(\omega t-\beta (xSin(\theta )+zCos(\theta ))
Calculating the Z- phase velocity (X=0):
\frac{d}{dt}(\omega t-\beta zCos(\theta ))=0=>\omega -\beta \frac{dz}{dt}Cos(\theta )=0=>v_{z}=\frac{\omega}{\beta Cos(\theta )}
which is the same as the book. However,

1)First: I need to know why the x velocity (on x-axis) is not important.
x phase velocity:(z=0)
\frac{d}{dt}(\omega t-\beta xSin(\theta ))=0=>\omega -\beta \frac{dx}{dt}Sin(\theta )=0=>v_{x}=\frac{\omega}{\beta Sin(\theta )}
2)Second: Why the resultant phase velocity is not the same as the light velocity(v_{c}=\frac{\omega}{\beta})
\sqrt{v_{z}^2+v_{x}^2}=\sqrt{({\frac{\omega}{\beta Cos(\theta )})}^2+({\frac{\omega}{\beta Sin(\theta )})}^2}=(\frac{\omega}{\beta Sin(2*\theta )})
 

Attachments

Last edited:
Physics news on Phys.org
baby_1 said:
1)First: I need to know why the x velocity (on x-axis) is not important.
The "x velocity" is just as important as the "z velocity". I guess that the textbook just decided not to mention the x velocity since it can be found in a similar manner to the z velocity. Below, I denote these velocities as ##u_x## and ##u_z##.

baby_1 said:
2)Second: Why the resultant phase velocity is not the same as the light velocity(v_{c}=\frac{\omega}{\beta})
\sqrt{v_{z}^2+v_{x}^2}=\sqrt{({\frac{\omega}{\beta Cos(\theta )})}^2+({\frac{\omega}{\beta Sin(\theta )})}^2}=(\frac{\omega}{\beta Sin(2*\theta )})
Imagine a stick moving with translational velocity ##\vec v## as shown below. The stick is the black line and ##\vec v## is perpendicular to the stick. The z and x components of ##\vec v## would be ##v_z= v \cos \theta## and ##v_x = v \sin \theta##.
1627072157553.png


The points of intersection of the stick with the z and x axes are shown in green. The speed at which the intersection with the z-axis moves along the z-axis is ##u_z = \frac{v}{\cos \theta}##. Similarly, for the speed of the intersection along the x-axis, ##u_x = \frac{v}{\sin \theta}##.

##u_z## and ##u_x## are not the z and x components of the velocity of some single point. In particular, they are not the z and x components of the velocity of some point on the stick. So, we do not expect ##v = \sqrt {u_z^2+u_x^2}##.

The textbook uses the notation ##v_{pz}## and ##v_{px}## for ##u_z## and ##u_x##. These should not be confused with the ##z## and ##x## components of the vector ##\vec v##: ##v_z## and ##v_x##.
 
  • Like
Likes Delta2, baby_1 and hutchphd
I see the Like is nothing to thank you. I really appreciate your explanations and the time you spent to draw the shape and explain more and more.
 
You are welcome.
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top