How Does Time-Reversal Invariance Affect Phi 4 Theory Renormalization?

Click For Summary
Time-reversal invariance plays a crucial role in the renormalization of phi 4 theory, particularly affecting the vacuum expectation value of quartic interactions. The divergence observed in the term involving the product of field operators, specifically ##\bra{\overrightarrow{P'}}\phi_{1-}\phi_{2-}\phi_{3+}\phi_{4+}\ket{\overrightarrow{P}}##, is linked to this invariance. According to established research, such as that by J. Schwinger, the expectation value is zero due to time-reversal symmetry. This indicates that certain terms in the theory may not contribute to physical observables. Further exploration of these concepts can enhance understanding of renormalization in quantum field theory.
Diracobama2181
Messages
70
Reaction score
3
Homework Statement
Given the energy momentum tensor
##\hat{T}^{\mu \upsilon}## and a Lagrangian with potential ##V=\frac{1}{2}m\phi^2+\lambda\phi^4##,
the quantity ##\bra{\overrightarrow{P'}}T^{\mu v}\ket{\overrightarrow{P}}## should diverge.
How would I go about the 1 loop re-normalization procedure on this term?
Relevant Equations
##\hat{T}^{\mu \upsilon}=\partial^{\mu}\partial^{\upsilon}-g^{\mu \upsilon}L##
##L=\frac{1}{2}\partial_{\mu}\partial^{\mu}-\frac{1}{2}m\phi^2-\lambda\phi^4##
##\phi=\frac{d^3k}{2\omega_k (2\pi)^3}\int(\hat{a}(\overrightarrow{k})e^{-ikx}+\hat{a}^{\dagger}(\overrightarrow{k})e^{ikx}))##
Let ##\phi_{+}=\frac{d^3k}{2\omega_k (2\pi)^3}\int(\hat{a}^{\dagger}(\overrightarrow{k})e^{ikx})##
and ##\phi_{-}=\frac{d^3k}{2\omega_k (2\pi)^3}\int(\hat{a}(\overrightarrow{k})e^{-ikx})##.
Then ##\phi^4=\phi_{1}\phi_{2}\phi_{3}\phi_{4}=(\phi_{1+}+\phi_{1-})(\phi_{2+}+\phi_{2-} )(\phi_{3+}+\phi_{3-}) (\phi_{4+}+\phi_{4-})##
Looking only at the term ##\phi_{1-}\phi_{2-}\phi_{3+}\phi_{4+}##, we find
##\bra{\overrightarrow{P'}}\phi_{1-}\phi_{2-}\phi_{3+}\phi_{4+}\ket{\overrightarrow{P}}## diverges. Unsure where to go from here. Any resources would be helpful. Thank you.
 
Last edited:
Physics news on Phys.org
A:The quantity you are interested in is the vacuum expectation value of a quartic interaction. This quantity is zero by time-reversal invariance, see e.g. this paper by J. Schwinger.
 

Similar threads

Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
5K