Can understanding physics improve my trampolining skills?

  • Thread starter Thread starter MarkAU
  • Start date Start date
  • Tags Tags
    Physics
AI Thread Summary
Understanding the physics of trampolining can enhance performance by clarifying how body position affects trajectory and rotation. Once airborne, a jumper's path is determined by projectile motion, with forward movement resulting from leaning during takeoff. Tucking during flips increases angular velocity due to conservation of angular momentum, while changes in body position can influence the center of gravity and thus the flight path. Energy conservation principles indicate that fatigue affects jump height, regardless of skill variation. Additional physics concepts, such as internal forces during tucking and the visual sensation of "hovering" during flips, further illustrate the complex dynamics at play in trampolining.
MarkAU
Messages
1
Reaction score
0
I've recently started trampolining and trying to get a feel for the physics involved. I did a tiny bit of physics years ago, so I've got a vague idea what's going on. Could you please check my understanding.

  1. Once you leave the trampoline mat, your trajectory is set, and you could model your your path using projectile motion. So if you travel forwards during a skill, its because your were leaning during takeoff, not because of the changes in body position during the performance of the skill.
  2. In a forward tucked somersault/flip you pull yourself into a ball (Heels to butt, knees to face) and rotate, tighter the tuck more angular velocity. To stop rotating you open back out again. I believe its the same basic principle as spinning on an office chair with arm's out vs arms in, but don't really understand what's going on.
  3. Related to 1 and 2, pulling into a tuck would change your center of gravity, which I believe can change your path mid flight. If so how great is this force and in which direction does it act.
  4. Conservation of energy: When you pull into a tuck you are gaining velocity and the energy to do that is from your bodies own metabolic energy stores, ie if we ignore air resistance and assume the same force is produced by the legs each jump there's no reason why a series of straight jumps should be any higher than one involving different skills. Or to put another way, it's you getting tired and not jumping as high, nothing else.
Are there any other physics involved that I'm not aware of ?
 
Physics news on Phys.org
1. and 3. Your center of mass will follow the shape of a parabola (or straight up and down if there's no horizontal motion) regardless of any tucking or body motion while in mid-air. Horizontal motion and rotational motion is initiated by a combination of lean and the force applied by the feet. Body and arm rotation during contact with the trampoline can add further to the initiation of rotation.

2. and 4. While in mid-air, angular momentum is conserved, so angular velocity and angular kinetic energy increases while transitioning into a tuck. During the transition into a tuck, there's an internal radial force to move body parts towards the center of rotation, and this internal work equals the gain in kinetic energy.

By flexing at the middle of the body or by positioning of the arms, forwards or backwards rotation can be converted into spinning rotation. Again the total angular momentum is conserved, and if the spin is initiated in mid-air, there will be a slight "tilt" of the body since the axis of rotation, along with angular momentum doesn't change.

I used to bounce trampoline, and one of the more notable visual sensations occurs during a back flip in layout position, when bouncing at or above your body height. In the second half of the flip, you look "down" (upwards relative to your body) towards the trampoline below you, and since your head is rotating upwards while you're center of mass accelerates downwards, you get the visual sensation of "hovering" instead of falling.

Unusual movements include doing a back flip after bouncing off your stomach. It's not used much in competitions, but it's a common move for trampolinists, called a "Cody". Another one is a front flip off the back, but with a 1/2 twist just after you leave the trampoline so it ends up becoming a back flip, called a "Jonah".
 
Last edited:
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Thread 'A scenario of non-uniform circular motion'
(All the needed diagrams are posted below) My friend came up with the following scenario. Imagine a fixed point and a perfectly rigid rod of a certain length extending radially outwards from this fixed point(it is attached to the fixed point). To the free end of the fixed rod, an object is present and it is capable of changing it's speed(by thruster say or any convenient method. And ignore any resistance). It starts with a certain speed but say it's speed continuously increases as it goes...
Back
Top