ravicplk
- 6
- 0
can anyone help me on the concept picard iteration?
thanks in advance
thanks in advance
thanks bro.HallsofIvy said:What do you want? A full course in the subject?
Here is a simple example: To solve the equation y'= y, y(0)= 1 using Picard iteration, start by approximating y by a constant. Since we know y(0)= 1, "1" is a good choice. Then the equation becomes y'= 1 and, integrating, y= x+ C. When x= 0, y(0)= C= 1 so the first "iteration" gives y= x+ 1.
Now the equation is y'= x+ 1. Integrating, y= (1/2)x2+ x+ C and, setting x= 0, y(0)= C= 1 so y= (1/2)x2+ x+ 1.
Now the equation is y'= (1/2)x2+ x+ 1. Integrating, y= (1/6)x3+ (1/2)x+ x+ C and, setting x= 0, y(0)= C= 1 so y= (1/6)x3+ (1/2)x2+ x+ 1.
Now the equation is y'= (1/6)x3+ (1/2)x2+ x+ 1. Integrating, y= (1/24)x4+ (1/6)x3+ (1/2)x2+ x+ C and, letting x= 0, y(0)= C= 1 so y= y= (1/24)x4+ (1/6)x3+ (1/2)x2+ x+ 1.
Continuing the iteration will give higher and higher powers of x. It should be clear now that we are getting terms of the form (1/n!)xn and that this is giving higher and higher order Taylor Polynomials for ex, the actual solution to y'= y, y(0)= 1.