vanesch
Staff Emeritus
Science Advisor
Gold Member
- 5,102
- 20
taylaron said:I completely agree with you Cheeto. from my perspective, the world knows that using fusion to generate the electricity to power the world is possible. Of course there are speed bumps and mountains that must be traversed as usual. But this was also the case during WWII. They knew a massive uncontrolled fusion reaction capable of leveling a city was possible; given the money and resources, they succeeded. I think this is just as important if not more than this case.
After all, its about saving the planet; not just the USA... (there's some perspective for ya)
I would like to chime in. It is not about "saving the planet" (that's some Gaia worshippers' religion's claim), but about "saving our lifestyle". So we should find solutions compatible with our lifestyle to save it in the first place. That means that whatever we are going to use as energy sources must be plentiful and economical (including external costs).
There's a big difference between making an atomic bomb, which is in fact "easy" (nature does it for you, you just have to configure things correctly), and making a power-delivering fusion reactor, which has turned out very very difficult. I'm also convinced that one day, fusion will be a possible power source. The point is that this day is probably at least a century away from us: net energy production has not even been demonstrated in extremely sophisticated LABORATORY conditions. So doing this on an INDUSTRIAL scale, and in a COMPETITIVE WAY, is still science fiction. We need to "shift gears" technologically before this becomes conceivable. So putting some brilliant scientists together and giving them unlimited budget for a few years (like the Manhattan project) won't do. Making a nuke was child's game compared to this challenge. Fission is "waiting to happen". Fusion, you have to force it.
With these spirits in mind, could someone give me a rough estimate of how much $ would have to be spent to just get this research going steady? Excluding the funding money for the following years; who knows how long and how much money would go into it. but Fusion is a topic for another thread.
ITER is going to run for 30 years, to try to demonstrate for the first time the possibility of producing as much energy as has been put in. Halfway through ITER one will have to determine the design parameters of "DEMO" which should start around 2050 or so, which should demonstrate the possibility of *practical* (but not economical) power production. After that, one should find out whether it is industrially and economically feasible to design a genuine reactor (DEMO will be an international collaboration of which every KWh will be several times the market price if everything works well).
I think one should do that. But I don't think one should include any speculations about any results in any serious energy policy for the coming decades.