yungman
- 5,741
- 291
This is part of the derivation that I cannot do, this is to show:
\nabla'\cdot\vec J_{(\vec r\;',t_r)} =-\frac {\partial \rho_{(\vec r\;',t_r)}}{\partial t} -\frac 1 c \frac {\partial \vec J_{(\vec r\;',t_r)}}{\partial t_r}\cdot(\nabla'\eta) \;\hbox { where } \;\eta = |\vec r - \vec r\;'| \;\hbox { ,}\; t_r= t-\frac {\eta}{c} \;\hbox { and }\; c=\frac 1 {\sqrt{\mu_0\epsilon_0}}
The book claimed the first term \rho is from continunity equation. I just don't know how to get this.
\nabla is respect to \vec r and \nabla' is respect to \vec r\;'
I have no problem solving:
\nabla\cdot\vec J_{(\vec r\;',t_r)} = \frac {\partial J_x}{\partial t_r} \frac { \partial t_r}{\partial x} + \frac {\partial J_y}{\partial t_r} \frac { \partial t_r}{\partial y} +\frac {\partial J_z}{\partial t_r} \frac { \partial t_r}{\partial z} \;=\;-\frac 1 c \left ( \frac {\partial J_x}{\partial t_r} \frac { \partial \eta}{\partial x} + \frac {\partial J_y}{\partial t_r} \frac { \partial \eta}{\partial y} +\frac {\partial J_z}{\partial t_r} \frac { \partial \eta}{\partial z}\right ) \;=\; -\frac 1 c \frac {\partial \vec J}{\partial t_r} \cdot (\nabla \eta)
I thought it is just the same:
\nabla'\cdot\vec J_{(\vec r\;',t_r)} = \frac {\partial J_x}{\partial t_r} \frac { \partial t_r}{\partial x'} + \frac {\partial J_y}{\partial t_r} \frac { \partial t_r}{\partial y'} +\frac {\partial J_z}{\partial t_r} \frac { \partial t_r}{\partial z'} \;=\;\frac 1 c \left ( \frac {\partial J_x}{\partial t_r} \frac { \partial \eta}{\partial x'} + \frac {\partial J_y}{\partial t_r} \frac { \partial \eta}{\partial y'} +\frac {\partial J_z}{\partial t_r} \frac { \partial \eta}{\partial z'}\right ) \;=\; -\frac 1 c \frac {\partial \vec J}{\partial t_r} \cdot (\nabla \eta)
Please help.
Thanks
\nabla'\cdot\vec J_{(\vec r\;',t_r)} =-\frac {\partial \rho_{(\vec r\;',t_r)}}{\partial t} -\frac 1 c \frac {\partial \vec J_{(\vec r\;',t_r)}}{\partial t_r}\cdot(\nabla'\eta) \;\hbox { where } \;\eta = |\vec r - \vec r\;'| \;\hbox { ,}\; t_r= t-\frac {\eta}{c} \;\hbox { and }\; c=\frac 1 {\sqrt{\mu_0\epsilon_0}}
The book claimed the first term \rho is from continunity equation. I just don't know how to get this.
\nabla is respect to \vec r and \nabla' is respect to \vec r\;'
I have no problem solving:
\nabla\cdot\vec J_{(\vec r\;',t_r)} = \frac {\partial J_x}{\partial t_r} \frac { \partial t_r}{\partial x} + \frac {\partial J_y}{\partial t_r} \frac { \partial t_r}{\partial y} +\frac {\partial J_z}{\partial t_r} \frac { \partial t_r}{\partial z} \;=\;-\frac 1 c \left ( \frac {\partial J_x}{\partial t_r} \frac { \partial \eta}{\partial x} + \frac {\partial J_y}{\partial t_r} \frac { \partial \eta}{\partial y} +\frac {\partial J_z}{\partial t_r} \frac { \partial \eta}{\partial z}\right ) \;=\; -\frac 1 c \frac {\partial \vec J}{\partial t_r} \cdot (\nabla \eta)
I thought it is just the same:
\nabla'\cdot\vec J_{(\vec r\;',t_r)} = \frac {\partial J_x}{\partial t_r} \frac { \partial t_r}{\partial x'} + \frac {\partial J_y}{\partial t_r} \frac { \partial t_r}{\partial y'} +\frac {\partial J_z}{\partial t_r} \frac { \partial t_r}{\partial z'} \;=\;\frac 1 c \left ( \frac {\partial J_x}{\partial t_r} \frac { \partial \eta}{\partial x'} + \frac {\partial J_y}{\partial t_r} \frac { \partial \eta}{\partial y'} +\frac {\partial J_z}{\partial t_r} \frac { \partial \eta}{\partial z'}\right ) \;=\; -\frac 1 c \frac {\partial \vec J}{\partial t_r} \cdot (\nabla \eta)
Please help.
Thanks
Last edited: