- #1

- 3

- 0

## Homework Statement

Finding the electric field outside of a uniformly charged solid cylinder, of length L and radius R, at any point of its axis.

## Homework Equations

[tex]\displaystyle{ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \int \rho(r') \frac{(\vec{r} - \vec{r'})}{\left| \vec{r} - \vec{r'} \right|^3} d^3 r' }[/tex]

[tex]\rho(r') = \rho_0 [/tex]

[tex]\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} [/tex]

[tex]\vec{r'} = x'\hat{i} + y'\hat{j} + z'\hat{k} [/tex]

[tex]d^3 r' = r' dr' d\theta' dz' [/tex]

[tex]x' = r' cos \theta' [/tex]

[tex]y' = r' sin \theta' [/tex]

## The Attempt at a Solution

[/B]

Solving for a point P(0,0,z) outside of the cylinder, thus z > L/2 (assuming half of the cylinder is on the positive z-axis and the other half at the negative z-axis)

[tex]\displaystyle{ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \rho_0 \int \frac{ (-x'\hat{i} - y'\hat{j} + (z-z')\hat{k} ) }{ (x'^2 + y'^2 + (z-z')^2 )^\frac{3}{2} } d^3 r' }[/tex]

Since it's obvious from the symmetry of the problem that the electric field must be parallel to the z-axis (as the cosine and sine in the integrals will yield 0), then

[tex]\displaystyle{ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \rho_0 \int \frac{ (z-z')\hat{k} }{ (r'^2 + (z-z')^2 )^\frac{3}{2} } r' dr' d\theta' dz' }[/tex]

[tex]\displaystyle{ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \rho_0 \hat{k} \int_{\frac{-L}{2}}^{\frac{L}{2}} \left( \int_{0}^{R} \frac{ (z-z')r' dr' }{ (r'^2 + (z-z')^2 )^\frac{3}{2} } \right) dz' \int_{0}^{2\pi} d\theta' }[/tex]

Using u = r'² + (z-z')² and r'dr' = (1/2) du and evaluating the limits, the integral between parentheses will yield

[tex]\displaystyle{ \vec{E} = \frac{2\pi}{4 \pi \varepsilon_0} \rho_0 \hat{k} \int_{\frac{-L}{2}}^{\frac{L}{2}} \left( \frac{(z-z')}{|z-z'|} - \frac{(z-z')}{\sqrt{R^2 + (z-z')^2 } } \right) dz' }[/tex]

As aforementioned, since P(0,0,z) is outside the cylinder, z > z' and thus the absolute value will be positive then

[tex]\displaystyle{ \vec{E} = \frac{2\pi}{4 \pi \varepsilon_0} \rho_0 \hat{k} \int_{\frac{-L}{2}}^{\frac{L}{2}} \left( 1 - \frac{(z-z')}{\sqrt{R^2 + (z-z')^2 } } \right) dz' }[/tex]

Using, for the first integral, the formula

[tex]\displaystyle{ \int \frac{dx}{\sqrt{a^2 + x^2}} = ln (\sqrt{a^2 + x^2} + x) + C } [/tex]

And for the second integral the substitution u = R² + (z-z')², (1/2) du = (z-z') dz', finally leads to

[tex] \vec{E} = \frac{\rho_0}{2 \varepsilon_0} \left( ln \left( \frac{\sqrt{R^2 + (z+\frac{L}{2})^2 } + (z+\frac{L}{2} )}{\sqrt{R^2 + (z-\frac{L}{2})^2 } + (z-\frac{L}{2} )} \right ) +\sqrt{R^2 + (z-\frac{L}{2})^2} - \sqrt{R^2 + (z+\frac{L}{2})^2 } \right) \hat{k}[/tex]

Is this correct?