1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Please verify my solution (Electric field cylinder)

  1. Nov 21, 2014 #1
    1. The problem statement, all variables and given/known data

    Finding the electric field outside of a uniformly charged solid cylinder, of length L and radius R, at any point of its axis.

    2. Relevant equations

    [tex]\displaystyle{ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \int \rho(r') \frac{(\vec{r} - \vec{r'})}{\left| \vec{r} - \vec{r'} \right|^3} d^3 r' }[/tex]

    [tex]\rho(r') = \rho_0 [/tex]

    [tex]\vec{r} = x\hat{i} + y\hat{j} + z\hat{k} [/tex]

    [tex]\vec{r'} = x'\hat{i} + y'\hat{j} + z'\hat{k} [/tex]

    [tex]d^3 r' = r' dr' d\theta' dz' [/tex]

    [tex]x' = r' cos \theta' [/tex]

    [tex]y' = r' sin \theta' [/tex]



    3. The attempt at a solution

    Solving for a point P(0,0,z) outside of the cylinder, thus z > L/2 (assuming half of the cylinder is on the positive z-axis and the other half at the negative z-axis)

    [tex]\displaystyle{ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \rho_0 \int \frac{ (-x'\hat{i} - y'\hat{j} + (z-z')\hat{k} ) }{ (x'^2 + y'^2 + (z-z')^2 )^\frac{3}{2} } d^3 r' }[/tex]

    Since it's obvious from the symmetry of the problem that the electric field must be parallel to the z-axis (as the cosine and sine in the integrals will yield 0), then

    [tex]\displaystyle{ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \rho_0 \int \frac{ (z-z')\hat{k} }{ (r'^2 + (z-z')^2 )^\frac{3}{2} } r' dr' d\theta' dz' }[/tex]

    [tex]\displaystyle{ \vec{E} = \frac{1}{4 \pi \varepsilon_0} \rho_0 \hat{k} \int_{\frac{-L}{2}}^{\frac{L}{2}} \left( \int_{0}^{R} \frac{ (z-z')r' dr' }{ (r'^2 + (z-z')^2 )^\frac{3}{2} } \right) dz' \int_{0}^{2\pi} d\theta' }[/tex]

    Using u = r'² + (z-z')² and r'dr' = (1/2) du and evaluating the limits, the integral between parentheses will yield

    [tex]\displaystyle{ \vec{E} = \frac{2\pi}{4 \pi \varepsilon_0} \rho_0 \hat{k} \int_{\frac{-L}{2}}^{\frac{L}{2}} \left( \frac{(z-z')}{|z-z'|} - \frac{(z-z')}{\sqrt{R^2 + (z-z')^2 } } \right) dz' }[/tex]

    As aforementioned, since P(0,0,z) is outside the cylinder, z > z' and thus the absolute value will be positive then

    [tex]\displaystyle{ \vec{E} = \frac{2\pi}{4 \pi \varepsilon_0} \rho_0 \hat{k} \int_{\frac{-L}{2}}^{\frac{L}{2}} \left( 1 - \frac{(z-z')}{\sqrt{R^2 + (z-z')^2 } } \right) dz' }[/tex]

    Using, for the first integral, the formula

    [tex]\displaystyle{ \int \frac{dx}{\sqrt{a^2 + x^2}} = ln (\sqrt{a^2 + x^2} + x) + C } [/tex]

    And for the second integral the substitution u = R² + (z-z')², (1/2) du = (z-z') dz', finally leads to

    [tex] \vec{E} = \frac{\rho_0}{2 \varepsilon_0} \left( ln \left( \frac{\sqrt{R^2 + (z+\frac{L}{2})^2 } + (z+\frac{L}{2} )}{\sqrt{R^2 + (z-\frac{L}{2})^2 } + (z-\frac{L}{2} )} \right ) +\sqrt{R^2 + (z-\frac{L}{2})^2} - \sqrt{R^2 + (z+\frac{L}{2})^2 } \right) \hat{k}[/tex]

    Is this correct?
     
  2. jcsd
  3. Nov 22, 2014 #2

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    I'm not following. The 'first' integral appears to be [tex]\displaystyle{ \int_{\frac{-L}{2}}^{\frac{L}{2}} \left( 1 \right) dz' }[/tex].
    Certainly the log term in the final equation is dimensionally wrong. Each term should have dimension of length.
    A useful check is to see what happens as z tends to infinity. Your integral correctly produces ##\frac{R^2L}{z^2}##.
     
  4. Nov 22, 2014 #3
    Oops! You're right, I got confused with the first integral, but is the second integral correct, because I'm not getting ##\frac{R^2L}{z^2}##

    [tex]\displaystyle{ \vec{E} = \frac{2\pi}{4 \pi \varepsilon_0} \rho_0 \hat{k} \int_{\frac{-L}{2}}^{\frac{L}{2}} dz' - \frac{2\pi}{4 \pi \varepsilon_0} \rho_0 \hat{k} \int_{\frac{-L}{2}}^{\frac{L}{2}} \frac{(z-z')}{\sqrt{R^2 + (z-z')^2 } } dz' } [/tex]

    [tex]u = R^2 + (z-z')^2, du = -2(z-z')dz' [/tex]

    [tex]\displaystyle{ \vec{E} = \frac{2\pi L}{4 \pi \varepsilon_0} \rho_0 \hat{k} + \frac{2\pi}{4 \pi \varepsilon_0} \rho_0 \hat{k} \int_{R^2 + (z+\frac{L}{2})^2}^{R^2 + (z-\frac{L}{2})^2} \frac{u^{-\frac{1}{2}}}{2du} } [/tex]

    [tex]\displaystyle{ \vec{E} = \frac{2\pi }{4 \pi \varepsilon_0} \rho_0 \hat{k} \left( L + \sqrt{R^2 + \left( z - \frac{L}{2}\right)^2 } - \sqrt{R^2 + \left( z + \frac{L}{2}\right)^2 } \right) } [/tex]
     
  5. Nov 22, 2014 #4

    haruspex

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member
    2016 Award

    I didn't say you should get that as the answer. I said that should be the asymptotic form as z tends to infinity.
    It's a non-trivial exercise to check that, but it looks to me that it comes out right.
     
  6. Nov 22, 2014 #5
    Oh ok. thank you for the help!
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Please verify my solution (Electric field cylinder)
Loading...