Plotting points in three-dimensional space

AI Thread Summary
The discussion focuses on plotting four points in three-dimensional space, specifically points P, Q, R, and S with given coordinates. Participants explore how to determine the order and distances between these points, emphasizing the importance of visualizing them in 3D space. They discuss calculating the difference vector and its magnitude to find ratios, as well as simplifying calculations by adjusting coordinate scales. Some contributors suggest that a 2D projection may suffice for understanding the relationships between the points, highlighting that only one coordinate dimension might be necessary for certain analyses. Overall, the conversation revolves around methods for effectively visualizing and analyzing spatial relationships among the points.
member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this problem,
1683080471365.png
,
The four points are,
##P(8,2,6)##
##R(-2,16,-2)##
##Q(3.9,2)##
##S(\frac{14}{3}, \frac{20}{3}, \frac{10}{3})##

And the solution is,
1683080840048.png

However, does someone please know what in the proportion 2:1:3 mean?

Many thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
However, does someone please know what in the proportion 2:1:3 mean?
1683084109408.png
 
  • Like
Likes member 731016
renormalize said:
Thank you for your reply @renormalize !

I guess I can see where the comes from if we use a ruler to find the ratio.

However, how dose one know that without the drawing?

Many thanks!
 
ChiralSuperfields said:
However, how dose one know that without the drawing?
You are given the ##(x,y,z)## coordinates of each of the 4 points ##P,Q,R,S##. Can you can plot them in 3D space to see where they fall along the line? Do you know how to subtract two vectors to get their difference vector? And can you calculate the length of the difference vector to get the distance between the tips of those two vectors? (P.S.: "does" not "dose".)
 
  • Like
Likes scottdave and member 731016
renormalize said:
You are given the ##(x,y,z)## coordinates of each of the 4 points ##P,Q,R,S##. Can you can plot them in 3D space to see where they fall along the line? Do you know how to subtract two vectors to get their difference vector? And can you calculate the length of the difference vector to get the distance between the tips of those two vectors? (P.S.: "does" not "dose".)
Thank you for your reply @renormalize !

True it would be hard to tell which points are in which order if we did not graph the points in 3D space. Oh I now see. So if we find the magnitude of the difference vector between adjacent points then we should be able to find the ratio between them.

Many thanks!
 
  • Like
Likes scottdave and renormalize
ChiralSuperfields said:
True it would be hard to tell which points are in which order if we did not graph the points in 3D space. Oh I now see. So if we find the magnitude of the difference vector between adjacent points then we should be able to find the ratio between them.
To help get the ordering, you can also find the distances between pairs of non-adjacent points. For example, the pair of points with the biggest distance between them must be at the ends.

To simplify the arithmetic, a 'trick' you could use is to change all coordinate-scales by a factor of 3 to get rid of the thirds.
##S' = (3*\frac{14}{3}, 3*\frac{20}{3}, 3*\frac{10}{3}) = (14, 20, 10)##
##P' = (3*8,3*2,3*6) = (24, 6, 18)##
etc.

The order and relative spacing of ##P', Q', R'##, and ##S'## are the same as those of ##P, Q, R## and ##S##. But you don't have to work with the messy thirds. (But if you are not completely clear why that works, stick to using thirds.)

EDIT. A simpler way to get the order is to find how far each point is from the origin.
That won't always work, so struck-through.
 
Last edited:
  • Like
Likes member 731016
ChiralSuperfields said:
However, how dose one know that without the drawing?
:H
 
  • Like
  • Haha
Likes member 731016, SammyS and Steve4Physics
I had fun plotting things -- and, being lazy, realized a 3D plot isn't necessary: 2D, e.g. the projection on the XY plane, is already enough:

1683127913287.png

1683127943610.png


##\ ##
 
  • Like
Likes member 731016 and Steve4Physics
BvU said:
I had fun plotting things -- and, being lazy, realized a 3D plot isn't necessary: 2D, e.g. the projection on the XY plane, is already enough
In fact 1D is enough! Only the x-coordinates are required to answer the question. (Or alternatively, only the y or only the z ones.)
 
  • Like
Likes member 731016 and BvU
Back
Top