Because Pushoam used the Mathematica Plot function. This function plots an equation using Cartesian coordinates. In this case it merely relabels y as r, and x as ##\theta##, exactly as
@OmCheeto said.
Especially as we don't see what the author means by "r - ##\theta## space" in the few pages of the linked-to textbook that we have access to. "r - ##\theta## space" is not standard mathematical terminology, in my experience. If the author of this book has not stated what he means by this terminology, that's a very sloppy oversight.In an actual polar coordinate system, if r is fixed and ##\theta## is allowed to vary, you can an arc along a circle. In this so-called "##r - \theta## space," where r and ##\theta## are merely aliases for x and y, then yes, you would get a straight line segment, one that is horizontal.
The whole exercise seems very flaky to me, and seems to boil down to this:
1. Start with the equation y = 3x + 2.
2. Convert to polar form: ##r\sin(\theta) = 3r\cos(\theta) + 2##
3. Solve for r: ##r = \frac 2 {\sin(\theta) - 3\cos(\theta)}##
4. Rename r to y and ##\theta## to x
5. Plot the resulting equation: ##y = \frac 2 {\sin(x) - 3\cos(x)}##
Perhaps the author has a point in doing this, but without seeing more of the book than the few pages we have access to, it's not clear to me why we are doing this silly exercise.