In Baby Rudin, Theorem 7.25 states:(adsbygoogle = window.adsbygoogle || []).push({});

If [itex]K[/itex] is compact, [itex]f_n \in C(K)[/itex] for [itex]n=1,2,3,...[/itex] and if [itex]{f_n}[/itex] is pointwise bounded and equicontinuous on [itex]K[/itex], then

(a) [itex]{f_n}[/itex] is uniformly bounded on [itex]K[/itex]

The theorem continues with point (b), which I understand.

My question is, whether point (a) needs the equicontinuity, since:

* [itex]C(K)[/itex] is a set of continuous bounded functions on a compact space, i.e. uniformly continuous, hence there is no function [itex]g[/itex] s.t. [itex]g(x) \to \infty[/itex].

* if the previous holds, then by the hypothesis of pointwise boundedness of [itex]\{f_n\}[/itex], there must exist a number [itex]\sup_{x \in K, n=1,2,3,...} |f_n(x)| = M<\infty[/itex], [itex]x\in K[/itex] arbitrary and hence the uniform boundedness should hold.

Am I wrong?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Pointwise & uniform boundednes

**Physics Forums | Science Articles, Homework Help, Discussion**