Position of speaker in front of tube to produce stationary wave

AI Thread Summary
The discussion centers on the optimal positioning of a speaker to create stationary waves in a tube. It emphasizes that placing the speaker at a 45-degree angle helps minimize the coupling of the loudspeaker diaphragm to the wave, allowing reflections to be directed away from the tube. This positioning prevents reflections from re-entering the tube, which could disrupt resonance. The exact angle may not be critical, suggesting that other angles, like 60 degrees, could also work. Proper speaker placement is essential for effective wave formation and resonance in the experiment.
songoku
Messages
2,467
Reaction score
382
1621262147437.png


That is part of the article. I want to ask about step 4. I know the basic theory of how stationary wave is formed (superposition of incoming and reflected wave) and also basic concept about stationary wave in open and closed tube, something like this:
1621262304441.png

But I don't know the reason why in step 4, the speaker must be placed at angle 45o, not pointed directly into it. If I imagine it, putting the speaker directly in front of the tube will also produce reflection and possibly stationary wave.

Why should be the speaker placed at certain angle? And must it be 45o, or can it be some other angle such as 60o?

Thanks
 
Physics news on Phys.org
songoku said:
Summary:: I googled a lot of thing related to experiment to produce stationary wave using speaker and open / closed pipe and I saw an article.

Why should be the speaker placed at certain angle? And must it be 45o, or can it be some other angle such as 60o?
I think it must be to reduce the 'coupling' of the loudspeaker diaphragm to the wave in the tube and so that the reflection of the exiting wave will tend to be deflected away from the tube and not back into the tube and present an 'almost closed' end to that wave, affecting the resonance. The angle won't be ever so critical.
 
  • Like
Likes songoku and tech99
sophiecentaur said:
I think it must be to reduce the 'coupling' of the loudspeaker diaphragm to the wave in the tube and so that the reflection of the exiting wave will tend to be deflected away from the tube and not back into the tube and present an 'almost closed' end to that wave, affecting the resonance. The angle won't be ever so critical.
Thank you very much sophiecentaur
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Back
Top