# Potnetial of a spherical Shell (1 Viewer)

### Users Who Are Viewing This Thread (Users: 0, Guests: 1)

#### stunner5000pt

Griffith's EM problem 3.28
A spherical shell of radius R has a surface charge $\sigma = k \cos \theta$

a) Calculate the dipole moment of this charge distribution.
i know that
$$p = r' \sigma(r') da'$$

but here sigma depends on theta
would the dipole moment p then turn into
$$p = \theta' \sigma(theta') da'$$

and the radius of the sphere is constant theta and phi are constant
so that
$$p = \int_{0}^{\pi} \int_{0}^{2 pi} \theta' \sigma(\theta') R^2 \sin\theta' d \theta' d \phi$$
i get a negative dipole moemnt as a result of this though... which amkes no sense
what am i doing wrong??

thanks :)

Last edited:

#### quasar987

Homework Helper
Gold Member
Look at equ. 3.98. p and r' are VECTORS in there.

#### HalfManHalfAmazing

I take it you are refering to Griffith's textbook?

#### stunner5000pt

quasar987 said:
Look at equ. 3.98. p and r' are VECTORS in there.
right they are vectors...

so then i cant use theta the way i used it

so
$$\vec{p} = \int \vec{r'} \simga(\theta') d\vec{a'}$$
$$p = \int_{0}^{\pi} \int_{0}^{2\pi} r' k \cos\theta' r'^2 \sin\theta d\theta d\phi$$

but the integral
$$\int_{0}^{2\pi} \cos\theta' \sin\theta' d\theta = 0$$!
cant have zero dipole moment...

#### stunner5000pt

HalfManHalfAmazing said:
I take it you are refering to Griffith's textbook?
problem 3.28
page 151

#### quasar987

Homework Helper
Gold Member
$$\vec{r}=r\hat{r}=r(\hat{x}\sin\theta \cos \phi+\hat{y}\sin\theta\sin\phi+\hat{z}\cos\theta)$$

#### quasar987

Homework Helper
Gold Member
$\hat{r}$ is not a vector like $\hat{x},\hat{y},\hat{z}$. The latest are constants vectors while $\hat{r}$ points towards the point that you're integrating (if I may say so). So it changes as you "sum" each $d\theta$ and $d\phi$ (if I may be so ruthless). So you can't pull it out of the integral as opposed to "inert" vectors like $\hat{x},\hat{y},\hat{z}$.

### The Physics Forums Way

We Value Quality
• Topics based on mainstream science
• Proper English grammar and spelling
We Value Civility
• Positive and compassionate attitudes
• Patience while debating
We Value Productivity
• Disciplined to remain on-topic
• Recognition of own weaknesses
• Solo and co-op problem solving