Power and Efficiency without mass?

AI Thread Summary
The discussion revolves around the concept of energy conservation in free fall and how it relates to mass. It clarifies that the maximum height a ball reaches after bouncing is independent of its mass, as both mass and gravitational acceleration cancel out in the calculations. The solution demonstrates that if a ball loses a consistent percentage of energy during bounces, it will rise to the same height regardless of its mass. Critiques of the textbook solution highlight issues such as the lack of units and premature numerical substitutions, which could lead to confusion. Overall, the key takeaway is that the physics of free fall and energy conservation applies uniformly, irrespective of mass.
sbrads87
Messages
1
Reaction score
0
Homework Statement
Possible error in text (has happened before.)
A basketball loses 35% of its kinetic energy when it hits the floor. Initially dropped from a height of 1.2m. How much time will it be in the air between 3rd and 4th bounces?
Relevant Equations
Ek = Eg = mgh = m(9.81)(1.2)

s = v2t-1/2at^2
Really perplexed me as the answer provided does not solve for mass ... seemingly wants to use mass as a unit of height? Or perhaps I'm off base ... really just curious if this is even correct or possible?

Thanks in advance
 

Attachments

  • 20230303_225314.jpg
    20230303_225314.jpg
    32.8 KB · Views: 109
Physics news on Phys.org
Sounds okay. Is the answer going to be different depending on the mass of the b-ball ?
 
It is correct. The solution shows that the answer is independent of the mass. Look at it this way. If you drop a mass from height ##h_0##, its mechanical energy before the bounce is ##E_0=mgh_0##. If it loses 35% of that during the bounce, it will have ##KE_1=0.65mgh_0## left in the form of kinetic energy.

Question: To what maximum height ##h_1## will the ball rise?
Answer: $$mgh_1=KE_1=0.65mgh_0\implies h_1=0.65h_0.$$Note that the answer is independent of the mass. If you drop two unequal masses, they will hit the floor at the same time; if in addition they lose the same fraction of energy after the bounce, they will rise to the same maximum height.
 
The textbook solution is poor in several ways.

1. It plugs in numbers without units. E.g. we read "##mgh=11.8m##" instead of "##mgh=m\cdot 11.8m^2/s^2##". That may be why you thought it was turning mass into a distance.

2. It plugs in numbers too soon. By leaving g as g it would have cancelled out in the first part, as @kuruman shows in post #4. That makes for less work and greater accuracy.

3. It was never necessary to find an energy. Since after three bounces it will only have ##0.65^3## of its initial energy, we know it will rise to a height of ##1.2\cdot 0.65^3=0.33##m. After that, it is just a matter of finding how long it takes to fall to the ground from that height and doubling it.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top