Power delivered to wheels of car with constant air resistance

  • Thread starter Thread starter I_Try_Math
  • Start date Start date
  • Tags Tags
    Car Power Wheels
Click For Summary
The discussion centers around the power required by a car to overcome air resistance at different speeds. At 15 m/s, the car needs 20 hp to counteract air resistance, but when accelerating to 30 m/s, the total power requirement increases to 40 hp due to the need for additional power to maintain the higher speed. The participants explore how the formula P=Fv applies, emphasizing that while air resistance remains constant, the work done increases with speed. They also consider the implications of gear selection on engine torque and power delivery. Overall, the key takeaway is that maintaining higher speeds necessitates greater power output despite constant air resistance.
I_Try_Math
Messages
114
Reaction score
25
Homework Statement
Suppose that the air resistance a car encounters is independent of its speed. When the car travels at 15 m/s, its engine delivers 20 hp to its wheels. (a) What is the power delivered to the wheels when the car travels at 30 m/s? (b) How much energy does the car use in covering 10 km at 15 m/s? At 30 m/s? Assume that the engine is 25% efficient. (c) Answer the same questions if the force of air resistance is proportional to the speed of the automobile. (d) What do these results, plus your experience with gasoline consumption, tell you about air resistance?
Relevant Equations
##KE=\frac 1 2 mv^2##
##P=\frac W t##
For part (a) the answer key is saying it's 40 hp. I'm having trouble understanding this. So the car accelerates to 15 m/s, then it stays at that velocity of 15 m/s, needing only 20 hp power to overcome the work done by air resistance. Supposing the car then accelerates to 30 m/s and stays at that velocity and given that air resistant is constant in this problem, wouldn't the engine only need that same 20 hp to overcome air resistance and keep the car at 30 m/s?
 
Physics news on Phys.org
I_Try_Math said:
For part (a) the answer key is saying it's 40 hp. I'm having trouble understanding this. So the car accelerates to 15 m/s, then it stays at that velocity of 15 m/s, needing only 20 hp power to overcome the work done by air resistance.
Supposing the car then accelerates to 30 m/s and stays at that velocity and given that air resistant is constant in this problem, wouldn't the engine only need that same 20 hp to overcome air resistance and keep the car at 30 m/s?
How far does the car travel in one second at 15 m/s?
How far does the car travel in one second at 30 m/s?

Say that the force of air resistance is ##F##.

How much work is done by air resistance against the car as it covers the distance for 15 m/s?
How much work is done by air resistance against the car as it covers the distance for 30 m/s?

Or...

Is the engine in first gear or second gear for the two situations? What does that mean for how much torque the engine has to provide in the two situations?
 
##P=Fv##, apply this formula for the force of air resistance which is constant independent of speed and for the velocities ##v_1=15,v_2=30##.
 
jbriggs444 said:
How far does the car travel in one second at 15 m/s?
How far does the car travel in one second at 30 m/s?

Say that the force of air resistance is ##F##.

How much work is done by air resistance against the car as it covers the distance for 15 m/s?
How much work is done by air resistance against the car as it covers the distance for 30 m/s?

Or...

Is the engine in first gear or second gear for the two situations? What does that mean for how much torque the engine has to provide in the two situations?
Ah that makes it clear as day, thanks.
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?
Thread 'Struggling to make relation between elastic force and height'
Hello guys this is what I tried so far. I used the UTS to calculate the force it needs when the rope tears. My idea was to make a relationship/ function that would give me the force depending on height. Yeah i couldnt find a way to solve it. I also thought about how I could use hooks law (how it was given to me in my script) with the thought of instead of having two part of a rope id have one singular rope from the middle to the top where I could find the difference in height. But the...
I treat this question as two cases of Doppler effect. (1) When the sound wave travels from bat to moth Speed of sound = 222 x 1.5 = 333 m/s Frequency received by moth: $$f_1=\frac{333+v}{333}\times 222$$ (2) When the sound wave is reflected from moth back to bat Frequency received by bat (moth as source and bat as observer): $$f_2=\frac{333}{333-v}\times f_1$$ $$230.3=\frac{333}{333-v}\times \frac{333+v}{333}\times 222$$ Solving this equation, I get ##v=6.1## m/s but the answer key is...