(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

The exercise is this: The mass of the car is m=500 kg. The maximum speed of the car on flat road is v1=35 m/s and on 10 % up hill (tan(alpha)=0.1, alpha is with respect to flat) the maximum speed is v2=20 m/s. The friction force is double on up hill because it has been made with different material. What is the maximum speed of the car on down hill (5%) when the road is made with the same material than the flat surface? Suppose that the air resistance is zero.

2. Relevant equations

P=F*v

Gx=mg sin(alpha)

F_f=friction force

3. The attempt at a solution

I think the exercise itself is not correct. The power of the car on flat is P1=(F_f)v1 and on up hill it is P2=(2(F_f)+mg sin(alpha))v2. The powers need to be the same. So when I solve for F_f I get F_f=(mg sin(alpha)v2)/(v1-2v2) and this is smaller than zero because v1-2v2=(35-2*20) m/s=-5 m/s and mg sin(alpha)v2 is greater than zero (sin(alpha)=sin(arctan(0.1))=0.0995). But the friction force needs to be greater than zero. So I think this is incorrect exercise because the car cannot produce enough power to climb that hill with that speed.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Maximum speed of car on downhill

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**