MHB Power Series Convergence Assistance

Click For Summary
The power series $$\sum_{n = 2}^\infty \frac{(n-1)(-1)^n}{n!}$$ converges, and the Ratio Test confirms this with a limit of zero, indicating convergence. The series can be expressed in relation to the Maclaurin series for \( e^{-1} \). By manipulating the series, it can be rewritten as $$S = 1 - 2\sum_{n=2}^{\infty}\left(\frac{(-1)^n}{n!}\right).$$ Further simplification leads to the conclusion that the series converges to a specific value related to \( e^{-1} \). The final result for the convergence of the original series can be derived from these manipulations.
theCalc
Messages
2
Reaction score
0
The power series

$$\sum_{n = 2}^\infty \frac{(n-1)(-1)^n}{n!}$$

converges to what number?

So far, I've tried using the Ratio Test and the limit as n approaches infinity equals $0$. Also since $L<1$, the power series converges by the Ratio Test.
 
Last edited by a moderator:
Physics news on Phys.org
Maclaurin tells us:

$$e^{-1}=\sum_{n=0}^{\infty}\frac{(-1)^n}{n!}$$

You can write the given series in terms of the above. :)
 
I'm a bit lost and confused as to how I would manipulate the series, could you explain what steps would I need to take? Thanks.
 
Well, I think the first thing I would do is write:

$$e^{-1}=1-1+\sum_{n=2}^{\infty}\frac{(-1)^n}{n!}=\sum_{n=2}^{\infty}\frac{(-1)^n}{n!}$$

Next, let's write:

$$S=\sum_{n=2}^{\infty}\left(\frac{(-1)^n(n-1)}{n!}\right)=\sum_{n=2}^{\infty}\left(\frac{(-1)^nn}{n!}\right)-\sum_{n=2}^{\infty}\left(\frac{(-1)^n}{n!}\right)$$

$$S=\sum_{n=2}^{\infty}\left(\frac{(-1)^n}{(n-1)!}\right)-\sum_{n=2}^{\infty}\left(\frac{(-1)^n}{n!}\right)$$

$$S=\sum_{n=1}^{\infty}\left(\frac{(-1)^{n+1}}{n!}\right)-\sum_{n=2}^{\infty}\left(\frac{(-1)^n}{n!}\right)$$

$$S=1-\sum_{n=2}^{\infty}\left(\frac{(-1)^n}{n!}\right)-\sum_{n=2}^{\infty}\left(\frac{(-1)^n}{n!}\right)$$

$$S=1-2\sum_{n=2}^{\infty}\left(\frac{(-1)^n}{n!}\right)=\,?$$
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
5K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K