Power series solution for Log(1+x)

Click For Summary
SUMMARY

The discussion focuses on proving the power series solution for the logarithmic function, specifically that \(\log(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + \cdots\) for \(|x| < 1\). It highlights the use of the geometric series \(\frac{1}{1+x} = 1 - x + x^2 - x^3 + \ldots\) and the term-by-term integration of power series within their interval of convergence. The conclusion emphasizes that the Taylor series expansion for \(\log(1+x)\) converges to the same function, confirming the equality through derivative analysis and the behavior of the Taylor remainder.

PREREQUISITES
  • Understanding of Taylor series and Maclaurin series
  • Familiarity with power series and their convergence
  • Knowledge of geometric series and their properties
  • Basic calculus concepts, including differentiation and integration of series
NEXT STEPS
  • Study the convergence criteria for power series
  • Learn about the properties of Taylor series and their applications
  • Explore the geometric series and its derivations in detail
  • Investigate the implications of Taylor's remainder theorem in function approximation
USEFUL FOR

Mathematicians, calculus students, and anyone interested in series expansions and their applications in mathematical analysis.

ssh
Messages
17
Reaction score
0
Show that,

\[\log(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+\cdots\]
 
Last edited by a moderator:
Physics news on Phys.org
ssh said:
Show that log(1+x) = x - x2\2 + x3​\3...

Use that $\dfrac{1}{1+x}=1-x+x^2-x^3+\ldots\quad (|x|<1)$ and take into account that all power series can be integrated term by term on an interval lying inside the interval of convergence.
 
Can we write this as a Taylor's series as f(x) = Log(1+x), then f'(x)=1\1+x so on.
 
ssh said:
Can we write this as a Taylor's series as f(x) = Log(1+x), then f'(x)=1\1+x so on.

Of course you can. But using that method you only obtain the Taylor series of $f(x)=\log (1+x)$, that is $\displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}\dfrac{x^n}{n}$. To prove that $\log (1+x)=\displaystyle\sum_{n=1}^{\infty}(-1)^{n-1}\dfrac{x^n}{n}$ in $(-1,1)$ (also in $x=1$) you need to verify that the remainder of the Taylor series converges to $0$.
 
ssh said:
Show that,

\[\log(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}+\cdots\]

If you want to use the long method, remember that a Maclaurin series for a function is given by $\displaystyle \begin{align*} f(x) = \sum_{n = 0}^{\infty} \frac{f^{(n)}(0)}{n!}x^n \end{align*}$

So evaluating the derivatives gives

$\displaystyle \begin{align*} f(x) &= \ln{(1 + x)} \\ f(0) &= 0 \\ f'(x) &= \frac{1}{1 + x} \\ f'(0) &= 1 \\ f''(x) &= -\frac{1}{(1 + x)^2} \\ f''(0) &= -1 \\ f'''(x) &= \frac{2}{(1 +x)^3} \\ f'''(0) &= 2 \\ f^{(4)}(x) &= -\frac{3!}{(1 + x)^4} \\ f^{(4)}(0) &= -3! \\ f^{(5)}(x) &= \frac{4!}{(1 + x)^5} \\ f^{(5)}(0) &= 4! \\ \vdots \end{align*}$

So substituting these in gives

$\displaystyle \begin{align*} \ln{(1 + x)} &= \frac{0}{0!}x^0 + \frac{1}{1!}x^1 + \frac{(-1)}{2!}x^2 + \frac{2}{3!}x^3 - \frac{3!}{4!}x^4 + \frac{4!}{5!}x^5 - \dots + \dots \\ &= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots + \dots \end{align*}$
 
Now, we have to prove the Taylor's remainder R_n(x):

$$R_n(x)=\dfrac{f^{(n+1)}(\xi)}{(n+1)!}x^n=\dfrac{(-1)^n}{(1+\xi)^{n+1}}\dfrac{x^{n+1}}{(n+1)!}\quad (\xi \mbox{ between }0\mbox{ and }x)$$

has limit 0 for x\in (-1,1) as n\to \infty. For that reason is better to use the series expansion of 1/(1+x).
 
Taking the derivative of the MacLaurin series gives you
$1 -x +x^2 - x^3 + x^4 + \ldots$
Since this is a geometric series with ratio $-x$, it equals $\frac{1}{1 + x}$ when x is in $(-1, 1)$.
This shows the expression $\ln(1+x)$ and its MacLaurin expansion to have the same derivative over $(-1, 1)$, which means they are equal within a constant. And, since they are equal at $x=0$, this constant is zero.

If my reasoning is correct, this is simpler than proving the limit of the Taylor remainder.
 
Saknussemm said:
Taking the derivative of the MacLaurin series gives you
$1 -x +x^2 - x^3 + x^4 + \ldots$
Since this is a geometric series with ratio $-x$, it equals $\frac{1}{1 + x}$ when x is in $(-1, 1)$.
This shows the expression $\ln(1+x)$ and its MacLaurin expansion to have the same derivative over $(-1, 1)$, which means they are equal within a constant. And, since they are equal at $x=0$, this constant is zero.

If my reasoning is correct, this is simpler than proving the limit of the Taylor remainder.

It is, however, the essentially the same as Fernando Revilla's suggestion in the first response to this thread.
 
HallsofIvy said:
It is, however, the essentially the same as Fernando Revilla's suggestion in the first response to this thread.

The logic and context are not the same, as I was answering the question whether you can use the Taylor series. In general, you prove the validity of the Taylor expansion over a given interval by proving the Taylor reminder tends to zero as n goes to infinity. But here, because we can bring out a geometric series, as Fernando Revilla does in the initial answer, we have a simpler alternative. It is actually an exceptional case that is worth noting.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 33 ·
2
Replies
33
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
16K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K