Prandtl stress function for circular bar in torsion

AI Thread Summary
The discussion centers on the validity of two Prandtl stress functions for a circular bar in torsion, both of which must be zero on the boundary. The two functions, φ1 and φ2, yield divergent solutions for internal torque M, raising the question of which is correct. It is noted that the constants C in both functions have different units, suggesting they may have different values, specifically that Cφ2 = Cφ1/r². The equality of the moments derived from both functions confirms their relationship, leading to the conclusion that they can be reconciled mathematically.
davidwinth
Messages
103
Reaction score
8
TL;DR Summary
When applying two different (but equivalent) stress functions for a circular bar, two different results appear.
For a Prandtl stress function to be valid, it must be zero on the boundary. For a circular bar, both of these work:

$$\phi_1 = C\left(\frac{x^2}{r^2}+ \frac{y^2}{r^2} - 1\right)$$

$$\phi_2 = C \left(x^2+ y^2- r^2\right)$$

But performing the integration for the internal torque M gives divergent solutions. Since both functions are legitimate, which one is the "correct" one and why doesn't the other one work?

$$M = 2 \int \int_A \phi_1dxdy = -C \pi r^2$$

$$M = 2 \int \int_A \phi_2 dxdy = -C \pi r^4$$
 
Engineering news on Phys.org
Have you checked the derivations in Timoshenko's "Theory of Elasticity" ? There you may find the answer to your question.
 
Obviously, the units of ##C## in both ##\phi_1## and ##\phi_2## are different, thus they probably have different values as well.

Since ##r## is a constant, my guess is that ##C_{\phi_2} = \frac{C_{\phi_1}}{r^2}##.

$$\phi_1 = C_{\phi_1}\left(\frac{x^2}{r^2}+ \frac{y^2}{r^2} - 1\right) = \frac{C_{\phi_1}}{r^2}\left(x^2+y^2 - r^2\right) = C_{\phi_2}\left(x^2+y^2 - r^2\right) = \phi_2$$

Therefore we can verify this equality:
$$M_{\phi_1} = M_{\phi_2}$$
$$-C_{\phi_1} \pi r^2 = -C_{\phi_2} \pi r^4$$
$$-C_{\phi_1} \pi r^2 = -\frac{C_{\phi_1}}{r^2}\pi r^4$$
$$-C_{\phi_1} \pi r^2 = -C_{\phi_1}\pi r^2$$
 
Posted June 2024 - 15 years after starting this class. I have learned a whole lot. To get to the short course on making your stock car, late model, hobby stock E-mod handle, look at the index below. Read all posts on Roll Center, Jacking effect and Why does car drive straight to the wall when I gas it? Also read You really have two race cars. This will cover 90% of problems you have. Simply put, the car pushes going in and is loose coming out. You do not have enuff downforce on the right...
I'm trying to decide what size and type of galvanized steel I need for 2 cantilever extensions. The cantilever is 5 ft. The space between the two cantilever arms is a 17 ft Gap the center 7 ft of the 17 ft Gap we'll need to Bear approximately 17,000 lb spread evenly from the front of the cantilever to the back of the cantilever over 5 ft. I will put support beams across these cantilever arms to support the load evenly
Thread 'What's the most likely cause for this carbon seal crack?'
We have a molded carbon graphite seal that is used in an inline axial piston, variable displacement hydraulic pump. One of our customers reported that, when using the “A” parts in the past, they only needed to replace them due to normal wear. However, after switching to our parts, the replacement cycle seems to be much shorter due to “broken” or “cracked” failures. This issue was identified after hydraulic fluid leakage was observed. According to their records, the same problem has occurred...
Back
Top