Prandtl stress function for circular bar in torsion

AI Thread Summary
The discussion centers on the validity of two Prandtl stress functions for a circular bar in torsion, both of which must be zero on the boundary. The two functions, φ1 and φ2, yield divergent solutions for internal torque M, raising the question of which is correct. It is noted that the constants C in both functions have different units, suggesting they may have different values, specifically that Cφ2 = Cφ1/r². The equality of the moments derived from both functions confirms their relationship, leading to the conclusion that they can be reconciled mathematically.
davidwinth
Messages
103
Reaction score
8
TL;DR Summary
When applying two different (but equivalent) stress functions for a circular bar, two different results appear.
For a Prandtl stress function to be valid, it must be zero on the boundary. For a circular bar, both of these work:

$$\phi_1 = C\left(\frac{x^2}{r^2}+ \frac{y^2}{r^2} - 1\right)$$

$$\phi_2 = C \left(x^2+ y^2- r^2\right)$$

But performing the integration for the internal torque M gives divergent solutions. Since both functions are legitimate, which one is the "correct" one and why doesn't the other one work?

$$M = 2 \int \int_A \phi_1dxdy = -C \pi r^2$$

$$M = 2 \int \int_A \phi_2 dxdy = -C \pi r^4$$
 
Engineering news on Phys.org
Have you checked the derivations in Timoshenko's "Theory of Elasticity" ? There you may find the answer to your question.
 
Obviously, the units of ##C## in both ##\phi_1## and ##\phi_2## are different, thus they probably have different values as well.

Since ##r## is a constant, my guess is that ##C_{\phi_2} = \frac{C_{\phi_1}}{r^2}##.

$$\phi_1 = C_{\phi_1}\left(\frac{x^2}{r^2}+ \frac{y^2}{r^2} - 1\right) = \frac{C_{\phi_1}}{r^2}\left(x^2+y^2 - r^2\right) = C_{\phi_2}\left(x^2+y^2 - r^2\right) = \phi_2$$

Therefore we can verify this equality:
$$M_{\phi_1} = M_{\phi_2}$$
$$-C_{\phi_1} \pi r^2 = -C_{\phi_2} \pi r^4$$
$$-C_{\phi_1} \pi r^2 = -\frac{C_{\phi_1}}{r^2}\pi r^4$$
$$-C_{\phi_1} \pi r^2 = -C_{\phi_1}\pi r^2$$
 
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Thread 'Physics of Stretch: What pressure does a band apply on a cylinder?'
Scenario 1 (figure 1) A continuous loop of elastic material is stretched around two metal bars. The top bar is attached to a load cell that reads force. The lower bar can be moved downwards to stretch the elastic material. The lower bar is moved downwards until the two bars are 1190mm apart, stretching the elastic material. The bars are 5mm thick, so the total internal loop length is 1200mm (1190mm + 5mm + 5mm). At this level of stretch, the load cell reads 45N tensile force. Key numbers...
Back
Top