Prandtl stress function for circular bar in torsion

AI Thread Summary
The discussion centers on the validity of two Prandtl stress functions for a circular bar in torsion, both of which must be zero on the boundary. The two functions, φ1 and φ2, yield divergent solutions for internal torque M, raising the question of which is correct. It is noted that the constants C in both functions have different units, suggesting they may have different values, specifically that Cφ2 = Cφ1/r². The equality of the moments derived from both functions confirms their relationship, leading to the conclusion that they can be reconciled mathematically.
davidwinth
Messages
103
Reaction score
8
TL;DR Summary
When applying two different (but equivalent) stress functions for a circular bar, two different results appear.
For a Prandtl stress function to be valid, it must be zero on the boundary. For a circular bar, both of these work:

$$\phi_1 = C\left(\frac{x^2}{r^2}+ \frac{y^2}{r^2} - 1\right)$$

$$\phi_2 = C \left(x^2+ y^2- r^2\right)$$

But performing the integration for the internal torque M gives divergent solutions. Since both functions are legitimate, which one is the "correct" one and why doesn't the other one work?

$$M = 2 \int \int_A \phi_1dxdy = -C \pi r^2$$

$$M = 2 \int \int_A \phi_2 dxdy = -C \pi r^4$$
 
Engineering news on Phys.org
Have you checked the derivations in Timoshenko's "Theory of Elasticity" ? There you may find the answer to your question.
 
Obviously, the units of ##C## in both ##\phi_1## and ##\phi_2## are different, thus they probably have different values as well.

Since ##r## is a constant, my guess is that ##C_{\phi_2} = \frac{C_{\phi_1}}{r^2}##.

$$\phi_1 = C_{\phi_1}\left(\frac{x^2}{r^2}+ \frac{y^2}{r^2} - 1\right) = \frac{C_{\phi_1}}{r^2}\left(x^2+y^2 - r^2\right) = C_{\phi_2}\left(x^2+y^2 - r^2\right) = \phi_2$$

Therefore we can verify this equality:
$$M_{\phi_1} = M_{\phi_2}$$
$$-C_{\phi_1} \pi r^2 = -C_{\phi_2} \pi r^4$$
$$-C_{\phi_1} \pi r^2 = -\frac{C_{\phi_1}}{r^2}\pi r^4$$
$$-C_{\phi_1} \pi r^2 = -C_{\phi_1}\pi r^2$$
 
Here's a video by “driving 4 answers” who seems to me to be well versed on the details of Internal Combustion engines. The video does cover something that's a bit shrouded in 'conspiracy theory', and he touches on that, but of course for phys.org, I'm only interested in the actual science involved. He analyzes the claim of achieving 100 mpg with a 427 cubic inch V8 1970 Ford Galaxy in 1977. Only the fuel supply system was modified. I was surprised that he feels the claim could have been...
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
Back
Top