I Predicting Motion of a Swing on a Non-Horizontal Branch

AI Thread Summary
The discussion focuses on predicting the motion of a swing suspended from a non-horizontal branch, emphasizing that sufficient information is needed to specify the problem completely. Key factors include the positions of points C and D, the nature of the initial kick, and the mass distribution of the swing. The swing's motion can be analyzed using conservation of energy principles, with specific angles defined for the ropes relative to the coordinate axes. The initial kick is crucial as it determines the swing's starting position and energy. Overall, the approach appears to be on the right track for predicting the swing's motion.
{~}
Messages
63
Reaction score
0
TL;DR Summary
Do you understand swings?
swing.png


A swing is suspended from a non-horizontal tree branch. Points C and D are fixed in space. All 4 line segments in the diagram have constant distance. After some initial "kick" imparts energy to the system the only force acting externally on the system is gravity.

Is it possible to predict the motion of the swing?
 
Physics news on Phys.org
Yes, if we have enough information to completely specify the problem. What are the four points and what is attached between them? Where is the “initial kick” applied and what force is it, applied for how long? How is the mass of the swing distributed?
 
AB is the seat. AC and BD are the ropes. CD is the branch. I assume the system remains under tension. The initial kick could be positioning the swing away from the minimum energy position then releasing. Mass is centered on the swing seat with some non zero moment of inertia.
 
I define ##\theta## to be the angle a rope makes relative to z and ##\phi## is the angle relative to x. The branch is in the xz plane. From conservation of energy I got
$$ \frac{r_A^2}{2} \left[\left(\frac{\partial\theta_A}{\partial t}\right)^2 + \left(\frac{\partial\phi_A}{\partial t}\right)^2\right]+ \frac{r_B^2}{2}\left[\left(\frac{\partial\theta_B}{\partial t}\right)^2 + \left(\frac{\partial\phi_B}{\partial t}\right)^2\right] - r_A\cos \theta_A - r_B\cos\theta_B = 0$$
Am I on the right track?
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'Griffith, Electrodynamics, 4th Edition, Example 4.8. (First part)'
I am reading the Griffith, Electrodynamics book, 4th edition, Example 4.8 and stuck at some statements. It's little bit confused. > Example 4.8. Suppose the entire region below the plane ##z=0## in Fig. 4.28 is filled with uniform linear dielectric material of susceptibility ##\chi_e##. Calculate the force on a point charge ##q## situated a distance ##d## above the origin. Solution : The surface bound charge on the ##xy## plane is of opposite sign to ##q##, so the force will be...
Dear all, in an encounter of an infamous claim by Gerlich and Tscheuschner that the Greenhouse effect is inconsistent with the 2nd law of thermodynamics I came to a simple thought experiment which I wanted to share with you to check my understanding and brush up my knowledge. The thought experiment I tried to calculate through is as follows. I have a sphere (1) with radius ##r##, acting like a black body at a temperature of exactly ##T_1 = 500 K##. With Stefan-Boltzmann you can calculate...
Back
Top