B Pressure in a viscous liquid versus non-viscous fluids

AI Thread Summary
The discussion focuses on the definition of fluid pressure as outlined in H.C. Verma's "Concepts of Physics," emphasizing that this definition applies specifically to homogeneous, non-viscous fluids. The author highlights that for viscous fluids, pressure does depend on the orientation of the surface area due to the presence of shear stresses. The conversation also touches on the constitutive equation for Newtonian fluids, which relates viscosity, pressure, and velocity gradients, forming the foundation of fluid dynamics. This equation accounts for both shear and normal stresses, simplifying to an isotropic stress tensor under static conditions. The reference to "Transport Phenomena" by Bird et al. is suggested for further study on the topic.
Kashmir
Messages
466
Reaction score
74
Hc verma, concepts of Physics, vol 1 pg 258
"We define pressure of fluid at the point A as : ##P= F/\Delta S##
For a homogeneous and non-viscous fluid, this quantity does not depend on orientation of ##\Delta S## and hence we talk of pressure at a point".

Why did the author stress that the definition holds only for non-viscous fluids?
What happens to viscous fluids? Does the pressure depend on orientation in viscous fluids ?
 
Last edited by a moderator:
Physics news on Phys.org
Are you familiar with with the constitutive equation (rheological equation of state) for a Newtonian fluid in 3D in terms of the fluid viscosity, "pressure," and velocity gradient tensor? This is the more general version of Newton's law of viscosity that we learned about in freshman physics, and forms the basis of most of the fluid dynamics that we work with in practice. It includes not only shear stresses, but normal stress as well. The Newtonian fluid model reduces to an isotropic stress tensor (pressure) in the limit of static equilibrium.
 
Last edited:
Chestermiller said:
Are you familiar with with the constitutive equation (rheological equation of state) for a Newtonian fluid in 3D in terms of the fluid viscosity, "pressure," and velocity gradient tensor? This is the more general version of Newton's law of viscosity that we learned about in freshman physics, and forms the basis of most of the fluid dynamics that we work with in practice. It includes not only shear stresses, but normal stress as well. The Newtonian fluid model reduces to an isotropic stress tensor (pressure) in the limit of static equilibrium.
Thank you.
No, I've not studied it.
 
Kashmir said:
Thank you.
No, I've not studied it.
See Transport Phenomena by Bird et al
 
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top