High School Pressure in a viscous liquid versus non-viscous fluids

Click For Summary
The discussion focuses on the definition of fluid pressure as outlined in H.C. Verma's "Concepts of Physics," emphasizing that this definition applies specifically to homogeneous, non-viscous fluids. The author highlights that for viscous fluids, pressure does depend on the orientation of the surface area due to the presence of shear stresses. The conversation also touches on the constitutive equation for Newtonian fluids, which relates viscosity, pressure, and velocity gradients, forming the foundation of fluid dynamics. This equation accounts for both shear and normal stresses, simplifying to an isotropic stress tensor under static conditions. The reference to "Transport Phenomena" by Bird et al. is suggested for further study on the topic.
Kashmir
Messages
466
Reaction score
74
Hc verma, concepts of Physics, vol 1 pg 258
"We define pressure of fluid at the point A as : ##P= F/\Delta S##
For a homogeneous and non-viscous fluid, this quantity does not depend on orientation of ##\Delta S## and hence we talk of pressure at a point".

Why did the author stress that the definition holds only for non-viscous fluids?
What happens to viscous fluids? Does the pressure depend on orientation in viscous fluids ?
 
Last edited by a moderator:
Physics news on Phys.org
Are you familiar with with the constitutive equation (rheological equation of state) for a Newtonian fluid in 3D in terms of the fluid viscosity, "pressure," and velocity gradient tensor? This is the more general version of Newton's law of viscosity that we learned about in freshman physics, and forms the basis of most of the fluid dynamics that we work with in practice. It includes not only shear stresses, but normal stress as well. The Newtonian fluid model reduces to an isotropic stress tensor (pressure) in the limit of static equilibrium.
 
Last edited:
Chestermiller said:
Are you familiar with with the constitutive equation (rheological equation of state) for a Newtonian fluid in 3D in terms of the fluid viscosity, "pressure," and velocity gradient tensor? This is the more general version of Newton's law of viscosity that we learned about in freshman physics, and forms the basis of most of the fluid dynamics that we work with in practice. It includes not only shear stresses, but normal stress as well. The Newtonian fluid model reduces to an isotropic stress tensor (pressure) in the limit of static equilibrium.
Thank you.
No, I've not studied it.
 
Kashmir said:
Thank you.
No, I've not studied it.
See Transport Phenomena by Bird et al
 
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

Replies
31
Views
4K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
7
Views
2K
Replies
1
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
8K