Pressure in the corners of a box

AI Thread Summary
In a pressurized cube, the pressure is uniform throughout, including at the edges and corners. Although it may seem that molecules bouncing off two walls at the corners could increase pressure, this does not occur because any pressure differential would lead to gas flow, contradicting the equilibrium condition. The concept of uniform pressure implies that all points within the volume experience the same pressure. While corners and edges may be structurally weaker and more prone to failure under high pressure, this is not due to increased pressure in those areas. Ultimately, the pressure remains consistent across the entire volume of the box.
oobgular
Messages
8
Reaction score
0
I have a fairly simple physics question, which I probably should know, but somehow I have never encountered it before.

Suppose you have a pressurized cube, filled to a high uniform pressure P. Will the force from the pressure be larger at the edges and corners of the box?

At the corner, molecules can bounce off both sides, which seems like it would make pressure rise. Macroscopically, if each wall has uniform pressure on it, it seems that the intersection of the faces would experience a force greater by sqrt2, since it has two equal, orthogonal components. However, this seems to contradict the whole idea of "uniform pressure."

Can anyone enlighten me on this? Thanks!
 
Physics news on Phys.org
You have force on the edge. You have the total of the force on one face. And then you have pressure, which is dimensionally force / area, which is not the same as pressure.
 
oobgular said:
t the corner, molecules can bounce off both sides, which seems like it would make pressure rise.
It makes no essential difference to a parcel of air whether it is bounded by a box wall or by another parcel of air.

If there were an equilibrium and if the pressure within a parcel of air near the corner were greater than the pressure elsewhere in the box then the parcel near the corner would expand into the box. You would have a net flow of gas. But that contradicts the equilibrium stipulation. This is a proof by contradiction that the pressure in the corners must be equal to the pressure in the bulk of the box.
 
  • Like
Likes scottdave
Another thing about molecules bouncing off "both sides". The molecules also bounce off each other in random directions.
 
Uniform/equal pressure in any volume of any size/shape bound within any object or surrounded by any other volume(s) is/are uniform/equal pressure at any/all points within said volume. To say that there would be any kind of difference in pressure of any kind at any point within that volume contradicts the very concept of "equal pressure", much less, it's definition.

A pressurized box may, at high pressures, burst or come apart at its edges and corners, but this isn't an effect of the pressure being higher in those areas, it's an effect of those areas being weaker than the other areas of its perimeter.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Hello everyone, Consider the problem in which a car is told to travel at 30 km/h for L kilometers and then at 60 km/h for another L kilometers. Next, you are asked to determine the average speed. My question is: although we know that the average speed in this case is the harmonic mean of the two speeds, is it also possible to state that the average speed over this 2L-kilometer stretch can be obtained as a weighted average of the two speeds? Best regards, DaTario
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top