Kurret said:
Why is the mathematical world so focused on prime numbers, why not the general case, to find all numbers with n prime factors?
CRGreathouse said:
I don't think there's any push to find (general) prime numbers -- there are too many -- but to learn how to quickly factor a number into its prime factors. This is interesting because such a factorization is unique (up to order and units), though there is still interest in factoring into coprimes and partial factorization in general.
That's a good question, Kurret (IMHO), and that's a good reply, Greathouse (IMHO).
Kurret,
A few more thoughts, adding to what Greathouse said.
One reason there is a "focus" on "prime numbers" these days is the relation with the Riemann hypothesis. For example, if we can show that the error term in the prime number theorem grows at the order of the square root of n, then we will know that the Riemann Hypothesis is true. (ref: Barry Mazur's "error term" article in this issue of the BAMS; the equivalence was shown about 100 years ago).
So, this fact reduces your question to "why is there so much interest in the Riemann hypothesis"?
Well, first of all, the RH is a very old problem.
Second, if it is true, many intereesting and beautiful facts about nature will follow. (My viewpoint is that interesting mathematics describes interesting things about nature.)
Third, everything that is known about the RH gives the impression that we a re very close to solving it.
Fourth, it's been that way for about 100 years now, so why haven't we solved it? (Riemann even wrote down an exact formula for the error term in the prime number theorem. It would seem that all we have to do is analyze that formula.)
Fifth, numerical studies of the behavour of the zeroes of the zeta function on the critical line indicate that current techniques are inadequate to solve it. The behaviour of those zeroes is just too strange and too sbutle to get a handle on. Therefore, a solution would likely result in a significant advance in our understanding of mathematics in general.
Sixth, there is a million dollar prize for the person who resolves it.
Seventh, the name of the person who solves it is very likely to go down in history for a very long time.
On the other hand, as Greathouse pointed out, the question you ask is really of very high interest to today's mathematicians. One reason for that is IF we could find an effectgive algorithm to answer your question, THEN we would be a lot closer to finding an effective algorithm to factoring the product of two large primes in a short period of time. This would break RSA cryptography. It is highly likely that the proof would carry over to break discrete logarithm cryptography. It is quite possible that the proof would allow us to break elliptic curve cryptography.
The underlying mathematical meta-principle that you are touching on is that it is a lot easier to ask hard questions than it isw to ask "good" quesitons. A "good" question is a question that we have a hope of solving; that we feel that if we worked on it, we should be able to come up with something.
A small group of very good mathematicians are currently investigating the properties of numbers that are the product of a large number of small primes. The fact that that investigation is difficult (but doable) underlines just how hard the question that you ask probably is.
Another good example of a "hard" question is the question of whether or not there are an infinite number of Mersenne primes. For that one, there even exists a heuristic argument that there are an infinite number and it yields an asympototic estimate for how many there are!
And yet, as far as I know, nobody has any idea about how to get started on actually proving that there are an infinite number of them. Richard Guy also said this in his book "Open Problems in Number Theory" or something like that.
Oh, oh, oh, except the female star of the science fiction movie called "Proof." The "science fiction" in the movie is that she resolved the question about the finiteness of the Mersenne primes.
DJ
P.S. I welcome corrections, or even "that doesn't sound right" comments. That's how I learn.