MHB Prime Subfiellds - Lovett, Proposition 7.1.3 ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Prime
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Abstract Algebra: Structures and Applications" by Stephen Lovett ...

I am currently focused on Chapter 7: Field Extensions ... ...

I need help with the proof of, or at least some remarks concerning, Proposition 7.1.3 ...Proposition 7.1.3 plus some introductory remarks (proof?) reads as follows:
https://www.physicsforums.com/attachments/6543

In the above text from Lovett we read the following:"... ... However, the multiplication on these elements as defined by distributivity gives this set of elements the structure of $$\mathbb{F}_p = \mathbb{Z} / p \mathbb{Z}$$. ... ... " ... ... BUT ... the subfield contains elements $$0, 1, 2, 3, 4, 5, \ ... \ ... \ (p -1)$$ ... and being a field, it contains divisions of these elements such as $$1/2, 3/5 \ ... \ ... \ ...$$... so how can this subfield be equal to $$\mathbb{Z} / p \mathbb{Z}$$ ... ... ?
Hope someone can help ...

Peter
 
Physics news on Phys.org
Are you aware that $\mathbb{Z} / p \mathbb{Z}$ is a field for a prime $p$ and therefore contains multiplicative inverses of all nonzero elements?
 
Evgeny.Makarov said:
Are you aware that $\mathbb{Z} / p \mathbb{Z}$ is a field for a prime $p$ and therefore contains multiplicative inverses of all nonzero elements?
Thanks Evgeny ... hmmm ... certainly seems that Lovett assumed I was aware of that ... ...

I was dimly aware ... but uncertain of how and why it all worked out ...

Intend to read material on finite fields in some of my texts ...

Peter
 
Hi Peter,

I would suggest looking back at your earlier posts on finite fields, in particular, one of your featured posts on finite fields.
 
For example, if p= 5 them F_p has the set {0, 1, 2, 3, 4} with "multiplication" being "multiplication modulo 5". In particular, 2*3= 6= 1 (mod 5) so "1/2" is "3" and "1/3" is "2". 4*4= 16= 1 (mod 5) so 4 is its own multiplicative inverse: "1/4" is "4".
 
Euge said:
Hi Peter,

I would suggest looking back at your earlier posts on finite fields, in particular, one of your featured posts on finite fields.
Yes ... good suggestion Euge ...

On my excursion into finite fields, I obviously did not spend enough time and effort on the topic ...

Peter

- - - Updated - - -

HallsofIvy said:
For example, if p= 5 them F_p has the set {0, 1, 2, 3, 4} with "multiplication" being "multiplication modulo 5". In particular, 2*3= 6= 1 (mod 5) so "1/2" is "3" and "1/3" is "2". 4*4= 16= 1 (mod 5) so 4 is its own multiplicative inverse: "1/4" is "4".
Thanks HallsofIvy ... your post was most helpful ...

Peter
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top