How Do You Calculate Probability Between Z Scores Without Tables?

Click For Summary
Calculating the probability of a random sample falling between two z scores requires evaluating a non-elementary integral, specifically G(a) = ∫₀^a (1/√(2π)) exp(-z²/2) dz, which cannot be expressed in finite elementary terms. The initial attempt using a calculus equation was incorrect, as it did not compute the integral needed for the probability. Tables or numerical integration methods are essential for obtaining accurate results, as demonstrated by the approximate value of 0.3769755969 for the integral from 0 to 1.16. The discussion emphasizes that while one can compute f(z) for specific z values, the integral calculation is crucial for determining probabilities. Therefore, reliance on tables or modern equivalents is necessary for accurate probability assessments.
g.lemaitre
Messages
267
Reaction score
2

Homework Statement



I want to calculate the probability of a random sample falling between 2 z scores using the way real mathematicians do it not the fake way by resorting to tables. Ok, so the book outlines the equation below but says that it requires calculus which is beyond the scope of this course. I know calculus so let's do it.

Homework Equations



Screenshot2012-10-06at83131PM.png


z = (x - μ)/σ

The Attempt at a Solution



Let's say x = 21, μ = 14 and σ = 6

thus

(21 - 14)/6 = 1.16, according to the tables the probability of a random sample falling between the z scores 0 and 1.16 is .3770

Now, let's use the calc equation:

\frac{\exp\frac{1}{2}(\frac{21-14}{6})^2}{6 \sqrt{2\pi}}

= .0336, not .3770, so I'm doing something wrong
 
Last edited by a moderator:
Physics news on Phys.org
hold on, I'm forgetting what tags are used to enclose latex.
 
well is the way to enclose latex, it's not working on my computer.
 
g.lemaitre said:

Homework Statement



I want to calculate the probability of a random sample falling between 2 z scores using the way real mathematicians do it not the fake way by resorting to tables. Ok, so the book outlines the equation below but says that it requires calculus which is beyond the scope of this course. I know calculus so let's do it.

Homework Equations



Screenshot2012-10-06at83131PM.png


z = (x - μ)/σ

The Attempt at a Solution



Let's say x = 21, μ = 14 and σ = 6

thus

(21 - 14)/6 = 1.16, according to the tables the probability of a random sample falling between the z scores 0 and 1.16 is .3770

Now, let's use the calc equation:

\frac{\exp\frac{1}{2}(\frac{21-14}{6})^2}{6 \sqrt{2\pi}

= .0336, not .3770, so I'm doing something wrong

You need a second bracket } after the 2\pi, because without it you have \frac{}{ (no closure).

So you have written
\frac{\exp\frac{1}{2}(\frac{21-14}{6})^2}{6 \sqrt{2\pi}}
and called this the calc equation. Well, it is nonsense! The actual probability that an N(0,1) random variable falls between 0 and 1.16 is
\int_0^{1.16} \frac{1}{\sqrt{2\pi}} \exp(-z^2/2)\, dz, which is a non-elementary integral; that is, there is no finite formula to express an integral of the form
G(a) = \int_0^a \frac{1}{\sqrt{2\pi}} \exp(-z^2/2)\, dz, for general values of 'a' (although exact values are available for some special values of 'a'). This is a *theorem*: it is impossible to express G(a) in finitely many elementary terms. It not that nobody has been smart enough to figure out a formula; it is a rigorously-proven fact that it is impossible to write such a formula. Basically, even if you write down a complicated formula taking 1 million pages to write out, it still won't represent G(a)! Not even 1 billion pages are enough. So, when we want to compute G(a) we must resort to the use of tables or numerical integration methods or approximate formulas. Don't scorn tables---they (or their modern equivalents) are necessary.

Anyway, using tables (or Maple, which I prefer) the answer for that integral is 0.3769755969, approximately.

RGV
 
when I did the calculations I got .204. Without the negative sign, since z is squared, i got .78

Screenshot2012-10-06at115836PM.png
 
g.lemaitre said:
when I did the calculations I got .204. Without the negative sign, since z is squared, i got .78

Screenshot2012-10-06at115836PM.png

You are NOT computing the integral, which is what needs to be done. Of course we can calculate f(z) for any z, but that is not the point. We need to calculate the INTEGRAL of f(z) for z from 0 to 1.16, and that is a much different problem. It needs tables or equivalent.

RGV
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
17
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K