MHB Probability distribution of girls

annie122
Messages
51
Reaction score
0
A certain couple is equally likely to
have either a boy or a girl. If the family has four children, let X
denote the number of girls.

Determine the probability distribution of X. (Hint: There are
16 possible equally likely outcomes. One is GBBB, meaning
the first born is a girl and the next three born are boys.)

=============

i don't understand why there are 16 outcomes not 5.
there can be 0, 1, 2, 3, or 4 girls..
 
Mathematics news on Phys.org
Yuuki said:
A certain couple is equally likely to
have either a boy or a girl. If the family has four children, let X
denote the number of girls.

Determine the probability distribution of X. (Hint: There are
16 possible equally likely outcomes. One is GBBB, meaning
the first born is a girl and the next three born are boys.)

=============

i don't understand why there are 16 outcomes not 5.
there can be 0, 1, 2, 3, or 4 girls..

The formula for probability of 'k over n' events is...

$\displaystyle P_{k,n} = \binom {n}{k} p^{k}\ (1-p)^{n - k}\ (1)$

... where $\displaystyle \binom {n}{k} = \frac{n!}{k!\ (n-k)!}$. In your case is $n=4$ and $p= \frac{1}{2}$ so that...

Kind regards

$\chi$ $\sigma$
 
Yuuki said:
i don't understand why there are 16 outcomes not 5.
there can be 0, 1, 2, 3, or 4 girls..

The problem is that those outcomes are not equally likely.

Each child can either be a boy or a girl.
Those 2 outcomes are equally likely.

If we look at only 2 children, the outcomes that are equally likely are BB, BG, GB, GG.
As you can see the outcome of 1 girl is twice as likely as 0 girls.

In the case of 4 children, what would be the probability of 0 girls?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top