MHB Probability of Drawing Same-Colored Balls from a Box

AI Thread Summary
The probability of drawing two balls of the same color from a box containing 2 red, 4 white, and 4 green balls is calculated by considering each color's probabilities. For red, the probability is (2/10) * (1/9). For white and green, the probabilities are both (4/10) * (3/9). Summing these probabilities gives the total probability of drawing two balls of the same color. The final result reflects the combined likelihood of drawing two red, two white, or two green balls in succession without replacement.
rymatson406
Messages
3
Reaction score
0
A box contains 2 red, 4 white, and 4 green two balls are drawn in succession without replacement. What is the probability that both balls are the same color?
 
Last edited:
Mathematics news on Phys.org
rymatson406 said:
A box contains 2 red, 4 white, and 4 green two balls are drawn in succession without replacement. What is the probability that both balls are the same color?

The probability is the sum of the probabilities:
  • 1. ball red and 2. ball red
  • 1. ball white and 2. ball white
  • 1. ball green and 2. ball green

The probability "1. ball red and 2. ball red":

The probability to pick a red ball from the box which contains $10$ balls, where $2$ of them are red, is $\displaystyle{\frac{2}{10}}$.
Now there are $9$ balls left in the box and $1$ of them is red.
So the probability for the second ball to be red is $\displaystyle{\frac{1}{9}}$.

Therefore the probability "1. ball red and 2. ball red" is equal to $$\frac{2}{10} \cdot \frac{1}{9}$$Do the same for the two other cases, and you get:
$$\frac{2}{10} \cdot \frac{1}{9}+\frac{4}{10} \cdot \frac{3}{9}+\frac{4}{10} \cdot \frac{3}{9}$$
 
Last edited by a moderator:
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top