MHB Probability of White Ball Drawn Twice From Urn I & II

  • Thread starter Thread starter Jameson
  • Start date Start date
  • Tags Tags
    Balls
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Basic problem:
Urn I has 4 white and 4 black balls. Urn II has 2 white and 6 black balls. Flip a fair coin. If the outcome is heads, then a ball from urn I is selected, whereas if the outcome is tails, then a ball from urn II is selected. Suppose a white ball is selected and the replaced. Denote this event by $W_1$. Now another ball is withdrawn at random from the same urn.

(a) What is the probability that the first ball is from urn I (given that it is white)?

My solution to part (a):
This can be solved by Bayes' Theorem in a pretty straightforward way. Let the notation $W_1$ mean that the first ball is white and let $U_1$ mean that it was chosen from urn I.

$$P \left( U_1|W_1 \right) = \frac{ P \left( W_1 \cap U_1 \right)}{P \left(W_1 \right)} = \frac{P \left( W_1|U_1 \right)P(U_1)}{P \left( W_1|U_1 \right)P(U_1)+P \left( W_1|U_2 \right)P(U_2)}$$.

Now plugging in the information I have into the last expression I get:

$$P \left( U_1|W_1 \right)=\frac{\frac{1}{2}\frac{1}{2}}{\frac{1}{2} \frac{1}{2}+\frac{1}{4}\frac{1}{2}}=\frac{2}{3}$$

So my question is how does that look?

(b) What is the probability that the second ball is also white?

My solution to part (b):
This one I'm not 100% sure on. I think it should be similar to part (a) except the values of $$P(U_1)$$ and $$P(U_2)$$ will be different. Instead of $\frac{1}{2}$ and $\frac{1}{2}$ they will be $\frac{2}{3}$ and $\frac{1}{3}$ respectively. So the solution should be found using the same method just replacing those values, correct?
 
Mathematics news on Phys.org
I think I solved it now. My above idea was wrong.

What I need to find is $$P(W_2|W_1)=\frac{P(W_2 \cap W_1)}{P(W_1)}$$. Both the numerator and denominator should be broken up into two cases. Once I do that I get the following:

$$P(W_2|W_1)=\frac{\frac{1}{2}\frac{1}{2}\frac{1}{2}+\frac{1}{4} \frac{1}{4}\frac{1}{2}}{\frac{1}{2}\frac{1}{2}+ \frac{1}{4}\frac{1}{2}}=\frac{5}{12}$$
 
Last edited:
Jameson said:
Basic problem:
Urn I has 4 white and 4 black balls. Urn II has 2 white and 6 black balls. Flip a fair coin. If the outcome is heads, then a ball from urn I is selected, whereas if the outcome is tails, then a ball from urn II is selected. Suppose a white ball is selected and the replaced. Denote this event by $W_1$. Now another ball is withdrawn at random from the same urn.
My solution to part (a):
This can be solved by Bayes' Theorem in a pretty straightforward way. Let the notation $W_1$ mean that the first ball is white and let $U_1$ mean that it was chosen from urn I.

$$P \left( U_1|W_1 \right) = \frac{ P \left( W_1 \cap U_1 \right)}{P \left(W_1 \right)} = \frac{P \left( W_1|U_1 \right)P(U_1)}{P \left( W_1|U_1 \right)P(U_1)+P \left( W_1|U_2 \right)P(U_2)}$$.

Now plugging in the information I have into the last expression I get:

$$P \left( U_1|W_1 \right)=\frac{\frac{1}{2}\frac{1}{2}}{\frac{1}{2} \frac{1}{2}+\frac{1}{4}\frac{1}{2}}=\frac{2}{3}$$

So my question is how does that look?

Looks fine!

Since the probability on urn I and urn II is equally likely, so any ball is equally likely, you can shorten it to:
$$P(U_1|W_1) = \frac{P(U_1 \wedge W_1)}{P(W_1)} = \frac{\frac 4 {16}}{\frac 6 {16}} = \frac 2 3$$
My solution to part (b):
This one I'm not 100% sure on. I think it should be similar to part (a) except the values of $$P(U_1)$$ and $$P(U_2)$$ will be different. Instead of $\frac{1}{2}$ and $\frac{1}{2}$ they will be $\frac{2}{3}$ and $\frac{1}{3}$ respectively. So the solution should be found using the same method just replacing those values, correct?

Jameson said:
I think I solved it now. My above idea was wrong.

What I need to find is $$P(W_2|W_1)=\frac{P(W_2 \cap W_1)}{P(W_1)}$$. Both the numerator and denominator should be broken up into two cases. Once I do that I get the following:

$$P(W_2|W_1)=\frac{\frac{1}{2}\frac{1}{2}\frac{1}{2}+\frac{1}{4} \frac{1}{4}\frac{1}{2}}{\frac{1}{2}\frac{1}{2}+ \frac{1}{4}\frac{1}{2}}=\frac{5}{12}$$

Working it out mathematically:

$$\begin{aligned}
P(W_2|W_1)&=\frac {P(W_1 \wedge W_2)}{P(W_1)} \\
&= \frac {P((U_1 \wedge W_1 \wedge W_2) \vee (U_1 \wedge W_1 \wedge W_2))}{P(W_1)} \\
&= \frac {P(U_1 \wedge W_1 \wedge W_2) + P(U_1 \wedge W_1 \wedge W_2)}{P(W_1)} && \text{disjoint sum rule}\\
&= \frac {P(W_2|U_1 \wedge W_1)P(U_1 \wedge W_1) + P(W_2|U_2 \wedge W_1)P(U_2 \wedge W_1)}{P(W_1)} && \text{product rule} \\
&= \frac {\frac 4 8 \cdot \frac 4 {16} + \frac 2 8 \cdot \frac 2 {16}}{\frac 6 {16}} && \text{rule for equally likely outcomes}\\
&= \frac 5 {12} \\
\end{aligned}$$
 
Last edited:
Thank you for your reply I like Serena! :)

I am leaving now for a study session so will have to reply later but I feel like my method is correct. Also, I think you might be interpreting the problem as without replacement but it's with replacement. Again, my apologies that I can't answer in more detail now but trust me I will later tonight and really appreciate the help!

I broke down the numerator as follows: $$P(W_1 W_2)=P(W_1 W_2|U_1)P(U_1)+P(W_1 W_2|U_2)P(U_2)$$ and the numbers I wrote follow. Do you see any flaw in this reasoning?
 
Last edited:
Jameson said:
Thank you for your reply I like Serena! :)

I am leaving now for a study session so will have to reply later but I feel like my method is correct. Also, I think you might be interpreting the problem as without replacement but it's with replacement. Again, my apologies that I can't answer in more detail now but trust me I will later tonight and really appreciate the help!

I broke down the numerator as follows: $$P(W_1 W_2)=P(W_1 W_2|U_2)P(U_2)+P(W_1 W_2|U_2)P(U_2)$$ and the numbers I wrote follow. Do you see any flaw in this reasoning?

Yes. Sorry. I had just realized my mistake and corrected it.
And your reasoning is flawless (although you made a typo with $U_1$ and $U_2$ ;)).

$$P(W_1 W_2)=P(W_1 W_2|U_1)P(U_1)+P(W_1 W_2|U_2)P(U_2)$$
 
Typo fixed and we now get the same answer, $\frac{5}{12}$, so I am marking the thread solved. :)

I feel confident about my midterm tomorrow. :D
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top