Problem in evaluating the absolute error

  • Thread starter Thread starter patric44
  • Start date Start date
  • Tags Tags
    Absolute Error
AI Thread Summary
The discussion revolves around evaluating absolute error in mass measurements, specifically when calculating the mass of a man sitting in a box. The correct method involves adding uncertainties when combining measurements, as demonstrated through examples. It emphasizes that uncertainties should be expressed with appropriate precision and that the combined uncertainty should reflect the largest contributing factor. The confusion arises when attempting to reverse the calculation, as subtracting uncertainties is not valid. Ultimately, the importance of correctly applying uncertainty rules in measurements is highlighted for accurate results.
patric44
Messages
308
Reaction score
40
Homework Statement
an empty large box of mass (20+-0.01)kg , when a man sits inside the box , the mass of the box and the man together become (0.1+-0.001) ton, find the mass of the man.
Relevant Equations
m=m+-Δm
hi guys
i came across this simple question about evaluating the absolute error, the solution is very simple as following :
$$
m_{man} = M_{b+m}\pm\Delta\;M_{b+m}-M_{b}\pm\Delta\;M_{b}
$$
so the mass of the man alone is
$$
m_{man} = (M_{b+m}-M_{b})\pm(\Delta\;M_{b+m}+\Delta\;M_{b})
$$
which would equal
$$
80\pm1.01
$$
but the argument is if i tried to calculate this the other way around assuming that the mass of the man is $80\pm0.99$ every thing will hold, as
$$
m_{b+m} = (M_{m}+M_{b})\pm(\Delta\;M_{m}+\Delta\;M_{b})=100\pm1\;kg
$$
why is that?
 
Physics news on Phys.org
patric44 said:
Homework Statement:: an empty large box of mass (20+-0.01)kg , when a man sits inside the box , the mass of the box and the man together become (0.1+-0.001) ton, find the mass of the man.
Relevant Equations:: m=m+-Δm
.
$80\pm0.99$ every thing will hold, as
$$
m_{b+m} = (M_{m}+M_{b})\pm(\Delta\;M_{m}+\Delta\;M_{b})=100\pm1\;kg
$$
why is that?
I guess ‘80\pm 0.99’ should be ##80\pm 0.99##.

You appear to have calculated ‘0.99’ by subtracting 0.01 from 1. But, when calculating the uncertainty of a sum or difference, you should always add the uncertainty values.

For example: x=10±1 and y=5±1, so x-y = 5±2.
But if you are given, with no prior knowledge, that x-y = 5±2 and y=5±1 then
x = (x-y) +y = 10±3 (not x = 10±1)

Some other points which might help:

1. A value should be specified to the same precision as its uncertainty.
E.g. (20±0.01) should be written as 20.00±0.01

2. The uncertainty of 0.01kg is very small compared to the uncertainty 1kg. And each uncertainty is specified to only 1 significant figure. The value of an uncertainty is itself an uncertain. So it doesn’t make much sense to say the combined uncertainty as 1.01kg – the combined uncertainty should be rounded to 1kg.

(Uncertainty values are typically only known to 1 or 2 significant figures. If you were told that the two uncertainties were 0.01kg and 1.00kg, then you would be justified in taking their sum as 1.01kg.)
 
Steve4Physics said:
I guess ‘80\pm 0.99’ should be ##80\pm 0.99##.

You appear to have calculated ‘0.99’ by subtracting 0.01 from 1. But, when calculating the uncertainty of a sum or difference, you should always add the uncertainty values.

For example: x=10±1 and y=5±1, so x-y = 5±2.
But if you are given, with no prior knowledge, that x-y = 5±2 and y=5±1 then
x = (x-y) +y = 10±3 (not x = 10±1)

Some other points which might help:

1. A value should be specified to the same precision as its uncertainty.
E.g. (20±0.01) should be written as 20.00±0.01

2. The uncertainty of 0.01kg is very small compared to the uncertainty 1kg. And each uncertainty is specified to only 1 significant figure. The value of an uncertainty is itself an uncertain. So it doesn’t make much sense to say the combined uncertainty as 1.01kg – the combined uncertainty should be rounded to 1kg.

(Uncertainty values are typically only known to 1 or 2 significant figures. If you were told that the two uncertainties were 0.01kg and 1.00kg, then you would be justified in taking their sum as 1.01kg.)

thanks its clear now , but i have another question:
assuming that i started by the answer given for the mass of the man, m= 80.00±1.01 kg (neglecting the fact that the book had written dm as 1.01 not 1), and i already have the mass of the box as 20.00±0.01, the sum of their masses = 100.00±1.02 kg , doesn't equal the value that was given .
as if this calculation only work once and not the other way around!
 
patric44 said:
assuming that i started by the answer given for the mass of the man, m= 80.00±1.01 kg (neglecting the fact that the book had written dm as 1.01 not 1), and i already have the mass of the box as 20.00±0.01, the sum of their masses = 100.00±1.02 kg , doesn't equal the value that was given .
as if this calculation only work once and not the other way around!
I think you are asking “why can’t you ‘reverse’ the process of combining uncertainties in order to recover the starting values?”.

For ‘reversal’, addition operations (on the magnitudes of uncertainties) would need to become subtraction operations. But it is meaningless to perform subtraction operations on the magnitudes of uncertainties

For example if two uncertainties happened to be equal (say both are ± 3) then subtracting the magnitude of one from the magnitude of the other would lead to zero uncertainty – which would not make sense.

You may need to work through the example I gave in post #2.
 
thank you so much, all clear now
 
  • Like
Likes Steve4Physics
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Replies
13
Views
2K
Replies
19
Views
2K
Replies
2
Views
15K
Replies
2
Views
9K
Replies
3
Views
2K
Replies
1
Views
2K
Replies
9
Views
2K
Back
Top