Problem solving a parametric indefinite integral

greg_rack
Gold Member
Messages
361
Reaction score
79
Homework Statement
$$\int \frac{h}{ky(h-y)} \ dy$$
Where ##h##, ##k## are real numbers
Relevant Equations
none
Since ##h## and ##k## are constants:
$$\frac{h}{k}\cdot \int \frac{1}{y(h-y)} \ dy$$
Now, rewriting the integrating function in terms of coefficients ##A## and ##B##:
$$\frac{1}{y(h-y)}=\frac{A}{y}+\frac{B}{h-y}\rightarrow B=A=\frac{1}{h} \rightarrow$$
$$\frac{1}{h}\int \frac{1}{y}\ dy + \frac{1}{h}\int \frac{1}{h-y}\ dy\rightarrow \frac{ln|y|}{h}-\frac{ln|h-y|}{h}+C$$
Which, multiplied by ##\frac{h}{k}##, becomes:
$$\frac{ln|\frac{y}{h-y}|}{k}+C_1$$
That doesn't correspond to the right integral.

Where did I get it wrong?
 
Physics news on Phys.org
greg_rack said:
But doesn't correspond to the right integral.
Says who ?

##\ ##
 
BvU said:
Says who ?

##\ ##
Nevermind, my bad... my reference did just wrote ##ln|\frac{y}{h-y}|## in the, of course, equivalent form ##-ln|\frac{h}{y}-1|##, and I haven't been able to see it at first sight :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top