MHB Problem using integral form of Work-Energy Theorem

skate_nerd
Messages
174
Reaction score
0
The problem is that the Earth has lost all velocity and begins plummeting toward the sun. I need to find the time it takes for it to hit the sun.

Note: Primes indicate "dummy variables"

This solution begins with the Work K.E. Theorem:
$$\frac{1}{2}mv(x)^2-\frac{1}{2}mv_{o}^2=\int_{x_o}^{x}F(x')dx'$$
Where \(v_{o}=0\) and $$F(x')=F(r)=\frac{-GMm}{r^2}$$
Plugging it all in gives
$$\frac{1}{2}mv(r)^2-\frac{1}{2}m(0)^2=\int_{r_{au}}^{r(t)}-\frac{GMm}{r'^2}dr'$$
$$\frac{1}{2}mv(r)^2=-GMm\int_{r_{au}}^{r(t)}\frac{1}{r'^2}dr'$$
Earth's mass cancels out, as expected, and then we want to solve to get the function \(v(r)\):
$$v(r)=\sqrt{-2GM\int_{r_{au}}^{r(t)}\frac{1}{r'^2}dr'}$$
$$=\sqrt{-2GM(-\frac{1}{r(t)}+\frac{1}{r_{au}})}$$
$$=\sqrt{2GM(\frac{1}{r(t)}-\frac{1}{r_{au}})}$$
Next, we use the following formula to find time as a function of position:
$$t(r)=\int_{r_{au}}^{r_{sun}}\frac{1}{v(r')}dr'$$
$$=\frac{1}{\sqrt{2GM}}{\int_{r_{au}}^{r_{sun}}} \frac{1}{\sqrt{\frac{1}{r(t)}-\frac{1}{r_{au}}}}dr'$$
The above integral gets a very long and gross answer via wolframalpha, and when I try plugging in the bounds I end up with an imaginary number.
Anybody know where I went wrong?
 
Mathematics news on Phys.org
Re: problem using integral form of Work K.E. Thm

skatenerd said:
$$\frac{1}{2}mv(r)^2-\frac{1}{2}m(0)^2=\int_{r_{au}}^{r(t)}-\frac{GMm}{r'^2}dr'$$
$$\frac{1}{2}mv(r)^2=-GMm\int_{r_{au}}^{r(t)}\frac{1}{r'^2}dr'$$
Earth's mass cancels out, as expected, and then we want to solve to get the function \(v(r)\):
$$v(r)=\sqrt{-2GM\int_{r_{au}}^{r(t)}\frac{1}{r'^2}dr'}$$
$$=\sqrt{-2GM(-\frac{1}{r(t)}+\frac{1}{r_{au}})}$$
$$=\sqrt{2GM(\frac{1}{r(t)}-\frac{1}{r_{au}})}$$
Starting from here I would use v = dr/dt, giving
[math] T = \int \frac{dr}{\sqrt{2GM \left ( \frac{1}{r} - \frac{1}{r_{au}} \right ) }} [/math]

There may be some substitutions that will shortcut this, but I prefer to work one substitution at a time. The method isn't that bad, but you really need to see it before you can do it on your own.

Let u = 1/r. Then the integral becomes
[math]T = -\int \frac{1}{\sqrt{Au - B}}\frac{1}{u^2}du[/math]
(where A and B are the appropriate constants.)

Now let y = Au - B. Then
[math]T = -A \int \frac{1}{\sqrt{y}} \frac{1}{(y + B)^2} dy[/math]

Let [math]z = \sqrt{y}[/math]. Then
[math]T = -2A \int \frac{1}{(z^2 + B)^2} dz[/math]

Let [math]z = \sqrt{B}~tan( \theta )[/math]. Then
[math]T = -\frac{2A}{B^{3/2}} \int cos^2( \theta )~d \theta [/math]

You can take it from here.

-Dan
 
Last edited by a moderator:
Re: problem using integral form of Work K.E. Thm

Wow, yeah I don't think I would have ever come up with that on my own haha. Thanks for the help.
 
Re: problem using integral form of Work K.E. Thm

skatenerd said:
Wow, yeah I don't think I would have ever come up with that on my own haha. Thanks for the help.
It highlights something I've noted in the more advanced Mathematics...keep redefining the problem until you get something familiar! (Cool)

-Dan
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top