- #1

- 9

- 0

## Main Question or Discussion Point

I read a lot literature how to provide dividing of the formulas to new lines,but it's work just on a short one good like 1st one and doesn't on main (2nd one)

I try different ways used {split} but everything stoped on the 2nd "\\". Can anybody say me why?

Code:

```
\begin{equation}\begin{split}
\Psi = & \cos kz + i\sin kz + {} \\
& {} + \frac{f(\theta)}{r}
(\cos kr + i\sin kr)
\end{split}\end{equation}
```

Code:

```
\begin{equation}\begin{split}
U = U_0\cos[c_1 \cos(\omega t) + c_2 cos(\omega_1 t) + \phi] \\
=U_0 \cos\phi\left[|J_0(c_1)J_0(c_2)| + \sum_n |2J_0(c_2 )J_{2n}(c_1)|\cos 2n\omega t \\
+\sum_k|2J_0(c_1 )J_{2k}(c_2)|\cos 2k\omega_1 t + \sum_n\sum_k |2J_2n(c_1)J_{2k}(c_2)| \cos [2(k\omega_1 — n\omega)t] \\
+\sum_n \sum_k|2J_{2n}(c_1)J_{2k}(c_2)|\cos [2(k\omega_1 + n\omega)t] \\
+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1—(2n — 1)\omega]t \\
+\sum_n \sum_k|J_{2n-1}(c_1)J_{2k-1}(c_2)|\cos[(2k —1)\omega_1+(2n — 1)\omega]t\right] \\
+U_0\sin\phi\left[\sum_n |2J_0(c_2)J_{2n-1}(c_1)|\cos[(2n—1)\omega t] \\
+\sum_k | 2J_0(c_1)J_{2k-1}(c_2)|\cos[(2k — 1)\omega_1 t] \\
+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1—(2n—1)\omega]t \\
+\sum_n \sum_k|2J_{2n-1}(c_1)J_{2k}(c_2)|\cos[2k\omega_1+(2n—1)\omega]t \\
+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1—2n\omega]t \\
+\sum_n \sum_k|J_{2n}(c_1)J_{2k-1}(c_2)|\cos [(2k—1)\omega_1+2n\omega]t\right]
\end{split}\end{equation}
```

Last edited: