Problem with Complex contour integration

Click For Summary
The discussion centers on computing the integral I = ∫_C (e^(i π z^2) / sin(π z)) along a specified contour. The user expresses uncertainty about their transformation of the integral into a real variable format, particularly regarding the expansion of the sine function in the denominator, which introduces complex exponentials. A response confirms the user's approach is valid and suggests re-expressing the exponential term for clarity, although it may not simplify the integral. Additionally, the responder shares their own method using a computer algebra system to derive the denominator without ambiguity. The conversation highlights the complexities involved in contour integration and the utility of computational tools in handling intricate calculations.
Joker93
Messages
502
Reaction score
37

Homework Statement


I want to compute ##I=\int_C \dfrac{e^{i \pi z^2}}{sin(\pi z)}##, where C is the path in the attached figure (See below). I want to compute this by converting the integral to one whose integration variable is real.

Homework Equations


There are not more relevant equations.

The Attempt at a Solution


From the path of the integration, we have that ##y=x-\frac{1}{2}##. Thus ##z=x+iy=x(1+i)-\frac{i}{2}##. With this, we can write the integral as
##I=-(1+i)\int_{-\infty}^{+\infty} \dfrac{e^{i \pi (x(1+i)-\frac{i}{2})^2}}{sin(\pi (x(1+i)-\frac{i}{2}))}##.
where we pick up a minus sign due to reversing the direction of integration.
Is this correct? I am using this integral for a more general proof, but it does not seem to fit nicely with the proof. In particular, what makes things ugly is the fact that when we expand the sin function in the denominator of the integrand function, we get things like ##e^{\pm \pi/2}##, which makes me feel not-so-sure about the steps leading from ##z## to ##x##.
Thank you!
 

Attachments

  • Untitled.png
    Untitled.png
    1.8 KB · Views: 426
Physics news on Phys.org
Joker93 said:

Homework Statement


I want to compute ##I=\int_C \dfrac{e^{i \pi z^2}}{sin(\pi z)}##, where C is the path in the attached figure (See below). I want to compute this by converting the integral to one whose integration variable is real.

Homework Equations


There are not more relevant equations.

The Attempt at a Solution


From the path of the integration, we have that ##y=x-\frac{1}{2}##. Thus ##z=x+iy=x(1+i)-\frac{i}{2}##. With this, we can write the integral as
##I=-(1+i)\int_{-\infty}^{+\infty} \dfrac{e^{i \pi (x(1+i)-\frac{i}{2})^2}}{sin(\pi (x(1+i)-\frac{i}{2}))}##.
where we pick up a minus sign due to reversing the direction of integration.
Is this correct? I am using this integral for a more general proof, but it does not seem to fit nicely with the proof. In particular, what makes things ugly is the fact that when we expand the sin function in the denominator of the integrand function, we get things like ##e^{\pm \pi/2}##, which makes me feel not-so-sure about the steps leading from ##z## to ##x##.
Thank you!

Everything you did is perfectly legitimate.

To go further, you could re-express ##\exp(i \pi (x(1+i) - \frac 1 2)^2) ## by expanding out the exponent in real and imaginary terms. That will turn out to give a nicer-looking result, although it will not make the integral any more "do-able".

As for expansion of the denominator: I did it using the computer algebra package "Maple" and obtained
$$\text{denominator} = \cos(\pi x) \cosh(\pi x) - i \: \sin(\pi x) \sinh(\pi x)$$
There are no "##\pm##" ambiguities when you carry out the simplifications all the way to the bitter end. (Getting the result above by manual computation would not be difficult, but I am tired of doing such stuff by hand---hence the use of a computer algebra package.)
 
  • Like
Likes Joker93
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
1K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K