mathwonk
Science Advisor
Homework Helper
2024 Award
- 11,952
- 2,221
@rudransh verma: another way to look at the derivative of f at a, is as the coefficient of the best linear approximation to the actual change function f(t)-f(a). I.e. if you can find a number D such that the change function f(t)-f(a) is well approximated by the linear function D.(t-a), then D is the derivative of f at a. By "well approximated" we mean the error term is a function vanishing to higher order than one, which means the change function f(t)-f(a) equals D.(t-a) + e(t).(t-a), where e(t) approaches zero as t approaches a. (Then the product e(t).(t-a) approaches zero faster than order one, as t appoaches a, since both factors approach zero.)
I.e. if we can write the change function f(t)-f(a) = (D+e(t)).(t-a), where D is a number and e(t) is a function such that e(t)-->0 as t-->a, then the change function f(t)-f(a) is well approximated by the linear function D.(t-a), for points t near a, and D is the derivative of f at a. I.e. the derivative of f at a, is the coefficient of the best linear approximation to the changes in f, between a and all points t near a.
Since f(t)-f(a) is well approximated by D.(t-a), also f(t) is well approximated by f(a) + D.(t-a), and the graph of f is well approximated by the graph of f(a) + D.(t-a), which is nothing but the tangent line to the graph of f, at a. So also the derivative of f at a, is the (lead) coefficient of the unique linear function whose graph is tangent to the graph of f, at a.
i have given several precise and meaningful descriptions of the derivative, but one may ask also what is the physical meaning? To me there is in fact no physical meaning to the derivative. I believe it has only mathematical meaning. But some authors wanting to give it some intuitive physical meaning, by extending the familiar meaning of rate of change, may ask us to imagine an infinitely small change in t, and the corresponding infinitely small change in f(t), and call the derivative the corresponding (finite) "infinitesimal rate of change of f at a". To me this is mostly nonsense, but I do not think one should entirely dismiss this sometimes useful "nonsense", but should try to make some attempt to come to terms with it. I am still trying.
I.e. if we can write the change function f(t)-f(a) = (D+e(t)).(t-a), where D is a number and e(t) is a function such that e(t)-->0 as t-->a, then the change function f(t)-f(a) is well approximated by the linear function D.(t-a), for points t near a, and D is the derivative of f at a. I.e. the derivative of f at a, is the coefficient of the best linear approximation to the changes in f, between a and all points t near a.
Since f(t)-f(a) is well approximated by D.(t-a), also f(t) is well approximated by f(a) + D.(t-a), and the graph of f is well approximated by the graph of f(a) + D.(t-a), which is nothing but the tangent line to the graph of f, at a. So also the derivative of f at a, is the (lead) coefficient of the unique linear function whose graph is tangent to the graph of f, at a.
i have given several precise and meaningful descriptions of the derivative, but one may ask also what is the physical meaning? To me there is in fact no physical meaning to the derivative. I believe it has only mathematical meaning. But some authors wanting to give it some intuitive physical meaning, by extending the familiar meaning of rate of change, may ask us to imagine an infinitely small change in t, and the corresponding infinitely small change in f(t), and call the derivative the corresponding (finite) "infinitesimal rate of change of f at a". To me this is mostly nonsense, but I do not think one should entirely dismiss this sometimes useful "nonsense", but should try to make some attempt to come to terms with it. I am still trying.
Last edited: