Undergrad Producing enough force with a Solenoid

Click For Summary
SUMMARY

The discussion focuses on designing a solenoid capable of producing a pushing force of approximately 0.5 lbs. The user has constructed a solenoid using 34 AWG wire, wrapped 9500 times, powered by a 32V supply, and successfully lifted 32g. To enhance the solenoid's force while operating at 9V, suggestions include utilizing an electromagnetic force calculator and understanding the relationship between current, resistance, and voltage according to Ohm's law. Additionally, the importance of converting the solenoid's pull into push force using a non-conductive rod is emphasized.

PREREQUISITES
  • Understanding of solenoid design principles
  • Knowledge of Ohm's law and electrical resistance
  • Familiarity with electromagnetic force calculations
  • Basic concepts of magnetic field strength (B-field)
NEXT STEPS
  • Research solenoid design parameters using an electromagnetic force calculator
  • Learn about the effects of wire gauge on resistance and current in solenoids
  • Explore methods to convert solenoid pull into push force effectively
  • Investigate the relationship between voltage, current, and magnetic field strength in solenoids
USEFUL FOR

Electronics hobbyists, engineers designing electromagnetic devices, and anyone interested in optimizing solenoid performance for personal projects.

PLA2820
Messages
1
Reaction score
0
TL;DR
Producing enough force with a Solenoid
Hi,

This is not a homework problem, but a small personal project where I am looking to create a small solenoid that can create enough pushing force of approximately 0.5 lbs. I am wondering what the best route is to create this amount of force.

So far, I was able to lift about 32g with my first solenoid which was 34 AWG wire wrapped about 9500 times around a coil with a plastic insert thickness (between the armature and coil) of .045 inches and this was at 32V power supply. The cylinder armature is .25 inches in diameter and 1 inch long.

To generate a stronger force what are some changes I can make to my coil? I would ideally like to be able to use 9V to generate this force in the long run. I am not sure if I am missing any other information that would be helpful but please let me know, Thank you.
 
Last edited by a moderator:
Physics news on Phys.org
PLA2820 said:
To generate a stronger force what are some changes I can make to my coil? I would ideally like to be able to use 9V to generate this force in the long run. I am not sure if I am missing any other information that would be helpful but please let me know, Thank you.
How about starting with something like this: https://engineering.icalculator.com/solenoid-coil-electromagnetic-force-calculator.html ?
You input the Length, Area, Number-of-Turns & Current for the coil and it calculates Force. You get voltage from the current by finding the total resistance of the turns of wire and using Ohm's law.
 
PLA2820 said:
TL;DR Summary: Producing enough force with a Solenoid

This is not a homework problem, but a small personal project where I am looking to create a small solenoid that can create enough pushing force of approximately 0.5 lbs. I am wondering what the best route is to create this of force.

So far, I was able to lift about 32g with my first solenoid which was 34 AWG wire wrapped about 9500 times around a coil with a plastic insert thickness (between the armature and coil) of .045 inches and this was at 32V power supply. The cylinder armature is .25 inches in diameter and 1 inch long.
Great reply by @renormalize so I can only add a couple small questions/points.

You mention a "push" requirement by your solenoid -- hopefully you see that solenoids attract metal slugs into their interior because of the magnetic field gradient. Solenoids cannot "push" unless you convert their pull into a push via a non-conductive back-pusher plastic rod. Does that make sense?

It's great that you've made an attractive solenoid, but it would be good if you could post the equations associated with your device. What was the resistance per unit length of your wire, and what current does that imply for the voltage you applied? Are you sure that your voltage source supplied that full source voltage to your load, or maybe did your load decrease the source voltage due to the source resistance?

What would you estimate your peak internal solenoid B-field to be given your source voltage and coil resistance and resulting number of amp-turns?

:smile:
 
In sci-fi when an author is talking about space travellers or describing the movement of galaxies they will say something like “movement in space only means anything in relation to another object”. Examples of this would be, a space ship moving away from earth at 100 km/s, or 2 galaxies moving towards each other at one light year per century. I think it would make it easier to describe movement in space if we had three axis that we all agree on and we used 0 km/s relative to the speed of...

Similar threads

Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 27 ·
Replies
27
Views
3K
Replies
11
Views
3K
  • · Replies 43 ·
2
Replies
43
Views
7K
  • · Replies 5 ·
Replies
5
Views
2K