MHB Product of Symmetric and Antisymmetric Matrix

ognik
Messages
626
Reaction score
2
Hi, I want to show that the Trace of the Product of a symetric Matrix (say A) and an antisymetric (B) Matrix is zero.
$So\: (AB)_{ij}=\sum_{k}^{}{a}_{ik}{b}_{kj} $
$and\: Tr(AB)=\sum_{i=j}^{}(AB)_{ij}=\sum_{i}^{}\sum_{k}^{}{a}_{ik}{b}_{ki} $
$because\:A\:is\:symetric, \: {a}_{ik}= {a}_{ki}\:so\:Tr(AB)=\sum_{i}^{}\sum_{k}^{}{a}_{ki}{b}_{ki}$
Here I am stuck - I want to say that because B is antisymetric, it's diagonal entries must be 0, but I am a bit weak with index notation, and especially with double summation signs - can't see how to show $b_{ki}$ is a diagonal element inside this summation ... I think :-)
 
Physics news on Phys.org
It is not necessary to use indices. Use the facts that $\operatorname{tr}A=\operatorname{tr}A^T$ and $\operatorname{tr}(AB)=\operatorname{tr}(BA)$.
 
Thanks Evgeny, I used Tr(ABT) = Tr(ATB)
Tr(ATB)=Tr(AB) and Tr(ABT)=Tr(A(-B))=-Tr(AB)
So Tr(AB)=-Tr(AB), therefore Tr(AB)=0
But if it can be done along the lines I tried with indexes, I'd really like to see that - I am looking for opportunities to practice Indexing :-)
Also I am still unsure what to do when I come across things like $\sum_{}^{}\sum_{}^{}$
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top