MHB Product of Symmetric and Antisymmetric Matrix

ognik
Messages
626
Reaction score
2
Hi, I want to show that the Trace of the Product of a symetric Matrix (say A) and an antisymetric (B) Matrix is zero.
$So\: (AB)_{ij}=\sum_{k}^{}{a}_{ik}{b}_{kj} $
$and\: Tr(AB)=\sum_{i=j}^{}(AB)_{ij}=\sum_{i}^{}\sum_{k}^{}{a}_{ik}{b}_{ki} $
$because\:A\:is\:symetric, \: {a}_{ik}= {a}_{ki}\:so\:Tr(AB)=\sum_{i}^{}\sum_{k}^{}{a}_{ki}{b}_{ki}$
Here I am stuck - I want to say that because B is antisymetric, it's diagonal entries must be 0, but I am a bit weak with index notation, and especially with double summation signs - can't see how to show $b_{ki}$ is a diagonal element inside this summation ... I think :-)
 
Physics news on Phys.org
It is not necessary to use indices. Use the facts that $\operatorname{tr}A=\operatorname{tr}A^T$ and $\operatorname{tr}(AB)=\operatorname{tr}(BA)$.
 
Thanks Evgeny, I used Tr(ABT) = Tr(ATB)
Tr(ATB)=Tr(AB) and Tr(ABT)=Tr(A(-B))=-Tr(AB)
So Tr(AB)=-Tr(AB), therefore Tr(AB)=0
But if it can be done along the lines I tried with indexes, I'd really like to see that - I am looking for opportunities to practice Indexing :-)
Also I am still unsure what to do when I come across things like $\sum_{}^{}\sum_{}^{}$
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
5
Views
5K
Replies
3
Views
815
Replies
14
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
12K