Progressive wave, wavelength moving in the opposite direction

Click For Summary
SUMMARY

The discussion focuses on determining the wavelength of a wave moving in both the +z and -z directions, using the equations ##\Psi(z=15cm,t) = \hat{x} 6 \cos (\frac{\pi}{3}t)## and ##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##. For the wave traveling in the -z direction, the wavelength is calculated as 18 cm using the formula ##\lambda = \frac{2\pi}{\kappa}##, where ##\kappa = \frac{\omega}{v}## and ##\omega = \frac{\pi}{3}##. In contrast, the wavelength for the wave moving in the +z direction is determined to be 9 cm, raising questions about the differing velocities and the selection of the integer ##n## in the general wave equation. The discussion concludes that without additional information, multiple solutions exist for the wavelength.

PREREQUISITES
  • Understanding of wave equations, specifically ##\Psi(z,t)## functions.
  • Familiarity with angular frequency ##\omega## and wave number ##\kappa##.
  • Knowledge of the relationship between wave speed, frequency, and wavelength.
  • Ability to manipulate and solve equations involving trigonometric functions.
NEXT STEPS
  • Study the derivation and application of the wave equation ##x(z,t) = A \cos(\omega t + \kappa z + \alpha_0)##.
  • Learn about the implications of wave direction on wavelength and frequency.
  • Investigate the significance of the integer ##n## in wave equations and how it affects solutions.
  • Explore the concept of phase velocity and group velocity in wave mechanics.
USEFUL FOR

Students and educators in physics, particularly those focusing on wave mechanics, as well as anyone involved in solving problems related to wave propagation and wavelength determination.

Redwaves
Messages
134
Reaction score
7
Homework Statement
Finding the wavelength. if the wave is moving in the +z direction and -z direction.
Relevant Equations
##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##
I'm trying to find the wavelength. However, I don't understand why the wavelength is different if the wave is moving in the +z direction.

I have
##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##

For a wave moving on the -z direction

I know that the wavelength = ##\frac{2\pi}{\kappa}## and the shape of the wave is describe by this function ##x(z,t) = A cos(\omega t +\kappa z + \alpha_0)##

##\kappa = \frac{\omega}{v}, \omega = \frac{\pi}{3}## and ##v = 12-18/(t+2)-t = -3##

thus, the wavelength = ##\frac{2\pi}{\pi/9} = 18 ##, which is the right answer.

However, for a wave moving in the +z direction the wavelength is 9cm. Why is this different ?The velocity isn't the same? how can I find it.
 
Last edited:
Physics news on Phys.org
Redwaves said:
Homework Statement:: Finding the wavelength. if the wave is moving in the +z direction and -z direction.
Relevant Equations:: ##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##

I'm trying to find the wavelength. However, I don't understand why the wavelength is different if the wave is moving in the +z direction.

I have
##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##

For a wave moving on the -z direction

I know that the wavelength = ##\frac{2\pi}{\kappa}## and the shape of the wave is describe by this function ##x(z,t) = A cos(\omega t +\kappa z + \alpha_0)##

##\kappa = \frac{\omega}{v}, \omega = \frac{\pi}{3}## and ##v = 12-18/(t+2)-t = -3##

thus, the wavelength = ##\frac{2\pi}{\pi/9} = 18 ##, which is the right answer.

However, for a wave moving in the +z direction the wavelength is 9cm. Why is this different ?The velocity isn't the same? how can I find it.
In general, we are given: $$\Psi(z_1, t+ t_1) = \Psi(z_2, t)$$Which implies that$$wt_1 = k(z_2 - z_1) \pm 2\pi n$$This gives us an infinite number of solutions, depending on the direction of motion and how many wavelengths there are between the points ##z_1## and ##z_2##.

If we take ##n = 0##, then we have $$\lambda = \frac{2\pi}{k} = 2\pi\frac{z_2 - z_1}{wt_1}$$And, in this case we have $$\lambda = 18cm$$. But, as above, there are infinitely many other solutions - one for ecah value of ##n##.
 
  • Like
Likes   Reactions: Redwaves
How we know which value for n we choose? In my example., how can I know that for a wave moving in the +z direction n is -1?
 
Redwaves said:
How we know which value for n we choose? In my example., how can I know that for a wave moving in the +z direction n is -1?
You don't know. Unless you have additional information, then there are multiple solutions.
 
In my case it should have a way to find wavelength since, that what I have to find.

Edit: from the information above, I have to find the wavelength.
Tell me if I'm not clear.
 
  • Skeptical
Likes   Reactions: PeroK

Similar threads

  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 17 ·
Replies
17
Views
2K
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K