Progressive wave, wavelength moving in the opposite direction

AI Thread Summary
The discussion centers on understanding why the wavelength differs for waves moving in opposite directions. For a wave traveling in the -z direction, the wavelength is calculated to be 18 cm using the formula λ = 2π/κ, where κ is derived from the wave's angular frequency and velocity. In contrast, the wavelength for a wave moving in the +z direction is found to be 9 cm, leading to confusion about the differing results despite the same wave properties. The conversation highlights that without additional information, multiple solutions exist for the wavelength due to the periodic nature of waves, and the choice of integer n can affect the outcome. Ultimately, clarity on how to determine n is crucial for resolving the discrepancy in wavelengths.
Redwaves
Messages
134
Reaction score
7
Homework Statement
Finding the wavelength. if the wave is moving in the +z direction and -z direction.
Relevant Equations
##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##
I'm trying to find the wavelength. However, I don't understand why the wavelength is different if the wave is moving in the +z direction.

I have
##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##

For a wave moving on the -z direction

I know that the wavelength = ##\frac{2\pi}{\kappa}## and the shape of the wave is describe by this function ##x(z,t) = A cos(\omega t +\kappa z + \alpha_0)##

##\kappa = \frac{\omega}{v}, \omega = \frac{\pi}{3}## and ##v = 12-18/(t+2)-t = -3##

thus, the wavelength = ##\frac{2\pi}{\pi/9} = 18 ##, which is the right answer.

However, for a wave moving in the +z direction the wavelength is 9cm. Why is this different ?The velocity isn't the same? how can I find it.
 
Last edited:
Physics news on Phys.org
Redwaves said:
Homework Statement:: Finding the wavelength. if the wave is moving in the +z direction and -z direction.
Relevant Equations:: ##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##

I'm trying to find the wavelength. However, I don't understand why the wavelength is different if the wave is moving in the +z direction.

I have
##\Psi(z=15cm,t) = \hat{x} 6 cos (\frac{\pi}{3}t)##
##\Psi(z=12cm,t + 2s) = \Psi(z=18cm,t)##

For a wave moving on the -z direction

I know that the wavelength = ##\frac{2\pi}{\kappa}## and the shape of the wave is describe by this function ##x(z,t) = A cos(\omega t +\kappa z + \alpha_0)##

##\kappa = \frac{\omega}{v}, \omega = \frac{\pi}{3}## and ##v = 12-18/(t+2)-t = -3##

thus, the wavelength = ##\frac{2\pi}{\pi/9} = 18 ##, which is the right answer.

However, for a wave moving in the +z direction the wavelength is 9cm. Why is this different ?The velocity isn't the same? how can I find it.
In general, we are given: $$\Psi(z_1, t+ t_1) = \Psi(z_2, t)$$Which implies that$$wt_1 = k(z_2 - z_1) \pm 2\pi n$$This gives us an infinite number of solutions, depending on the direction of motion and how many wavelengths there are between the points ##z_1## and ##z_2##.

If we take ##n = 0##, then we have $$\lambda = \frac{2\pi}{k} = 2\pi\frac{z_2 - z_1}{wt_1}$$And, in this case we have $$\lambda = 18cm$$. But, as above, there are infinitely many other solutions - one for ecah value of ##n##.
 
How we know which value for n we choose? In my example., how can I know that for a wave moving in the +z direction n is -1?
 
Redwaves said:
How we know which value for n we choose? In my example., how can I know that for a wave moving in the +z direction n is -1?
You don't know. Unless you have additional information, then there are multiple solutions.
 
In my case it should have a way to find wavelength since, that what I have to find.

Edit: from the information above, I have to find the wavelength.
Tell me if I'm not clear.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top