Projectile Motion Experiment: Results Too High?

Click For Summary
The projectile motion experiment yielded an unexpected acceleration of 14.02 m/s² instead of the expected 9.8 m/s². Suggestions for improvement include ensuring accurate length calibration by using a larger reference object placed directly in the trajectory's path. Additionally, the vertical fall distance should be measured using the equation a = 2 * y(t) / t² for better accuracy. It's also important to position the camera at a right angle to the wall to minimize perspective distortion. Conducting the experiment again with these adjustments is recommended for more reliable results.
burakyildiz
Messages
1
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
Hello everyone,
I have a homework about projectile motion experiment and I threw small ball over the table and ball did projectile motion at the end of the table and ı recording this motion on motion tracker and motion tracker gave me acceleration of y component of ball as 14.02 m/s^2. But it has to be 9.8 m/s^2 or at least 10 or 9 m/s^2. Why tracker gave me this results? Should i do the experiment again?

Ekran görüntüsü 2021-12-12 134042.png

Ekran görüntüsü 2021-12-12 133843.png
 
Physics news on Phys.org
Make sure your length calibration is accurate: Use a larger reference object, that is placed right where the trajectory is.

As a control: Use the vertical fall distance position y(t) and the equation: a = 2 * y(t) / t2
 
  • Like
Likes Orodruin, berkeman, DrClaude and 2 others
What @A.T. said. You have chosen an object far off to the side of the image as reference. Ideally your reference should be in the middle of the image and quite large.

Furthermore, your axes look quite tilted in comparison to the objects. You want to position the camera at a right angle to the wall and pointing as straight at your experimental setup as possible to avoid artefacts arising from perspective.
 
Beams of electrons and protons move parallel to each other in the same direction. They ______. a. attract each other. b. repel each other. c. neither attract nor repel. d. the force of attraction or repulsion depends upon the speed of the beams. This is a previous-year-question of CBSE Board 2023. The answer key marks (b) as the right option. I want to know why we are ignoring Coulomb's force?